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l Smoothmanifolds andsmooth mops

Definition An Mdimensional
smooth atlas Vi dilist on a topological

space M is an open cover Ui of M together with local charts

homeomorphisms

Mi
E

s opensubset of IRM

y
mm

all higher partial
derivatives exist

satisfying for all Uino to I
o fi is a smooth map between open

subsets of IR

t
m

it



An atlas on M allows us to say
when a function f M s IR is smooth

namely we
demand f all charts Hindi that fool is a smooth

map from an opensubset of IR to IR where we knowwhatthat means

A i

M

X
foot

IR

Definition Two smooth atlases Uidoilies and VuYale on M

we equivalent if they agree on
which functions f M SIR are smooth

Hausdorff 2ndcountable

Definition An Mdimensional smooth
manifold is a topologicalspace M equipped

with an equivalence classof an Mdimensional smooth atlas



Definition A map h M SN betweensmooth manifolds M digit
and

N ViY is smooth if for all i j

Y oh o fi opensubsetof IR s opensubsetof IR

is smooth

HE

M Joli

tweet m

A smooth mop hM N is called a diffeomorphism if h exists and

is smooth



Example 52 8.4.21 e IR AtY 22 1 is a smooth manifold

Smoothatlas a Un S2 Coo 11

Q Un SIR stereographic projection
from northpole

Y
play 2k12g C 1 ay

n

i
x 4,21

XM

Us 52 0,0 i

Js Us s IR

Miz Xml
Exercise lb

E 1 ay

9,4
Hy



To check it is a smooth atlas must check if thecoordinatechange mop

go off IR 1910,013
I s IR Cool

is smooth Exercise Ic

As an example of a smooth
function on 52 consider

f 5 s IR

XM2 1 12

n2

1 14,2 1
t

s 2

Sy

F

Is it smooth On the chart Un Gn we compute

flag fooling

ily I s
ay

211dy icky 1 i
t
s say I

ltitty

Is this a smooth mop Yes



wait
t

s 2

GayI
fr IR s IR

Exercise2 Checkthat the formulas for On On Ofs are correct and compute

05 Check that the transition function
coordinate changemop Onops is

smooth andalso its inverse

Example2 Willprovelater Given a smooth function

f
IRM SIR

the mdimensional hypersurface M f c willnaturally be a smooth
manifold

precisely when Df to forallxeM A
chart near seeM is defined by

orthogonal projection onto Rf thetangentspaceat se see later

R É Train1



Moreover the atlas above has the following property a map

h M s IR

witbesmooth

precisely
when his the restrictionof th

H U sIR

where U E IRM is an open neighborhoodof M in IR

Exercise3 Prove this

a eg can express s as a hypersurface

f IRS SIR

IX4,2 1 5429 22

52 f 7

We have Of of Of Ez
2x 24,22

to for all points A4,2 e52

o S naturally
inherits a smooth atlas

Also the propertiesof this atlas imply that eg

h St sIR

44,2 I s x2 cosY

is a smoothmap



Exercise4 Why is h a smoothmop

b The 2 torus Te IR can be expressed via the equation

2 Fyi 22

y

Exercise 5 a Checkthat Tis naturally
a smooth manifold

b Construct an explicit nonconstant
smoothmap h T 52andcheckit is
smooth



1.2 Tangentspaces

Definition Let M be a smoothmanifold
andseemThe tangent space IM is

the set of equivalence
classes of smooth curves

g lil s M glo x

Two curves g
and o are equivalent if in somechat U g

around x

Hitmenin atoneintr

É i
M

Exercise 1 Check that this equivalence relation is actually anequivalence relation

reflexive symmetrictransitive

Note that a chart Vio gives us a bijection

T M s IR

y Heo d



We equip I M with the structure of a real vector space by transporting

it over from IR via this bijection ie we set

k y 84.408

g o o or ooo

Exercise2 Check that this vector space structure on IM
doesnot

depend on the chart Uid

Example If M e IR is the hypersurface of a smoothmop

f M s IR

ie M f a for some c

then we have a canonical linear identification

T M I ve IR Rf v o

Exercise 3 Prove this



eg For 52 we have

TpS I air p v o

T
because p oily2

Ppf 231,29122

g

P

For T

Tpt



LemmailA smooth mop f M sN between smooth manifolds determines for

every seem
a linear map

defined by
FEI

Bf IM stayN

g i s for

1 Chainrule If g N
sP is another smooth map then

Die got Dfw g o D t

M
G

Proof i Exercise

Ii Deny g Dict Cy Denny fog

g fog

what a got or
simple

proof D got G



Note that when we think of IR as a smooth manifold viathe identity

atlas then for all germ we can canonically identify

18 1ft
thisonly

makes sense

belause thecure j
is

living
in IR



Extra1 The Implicit FunctionTheorem Let firmth s IR be a smooth

map and suppose that
at per't Dpf is surjective Then

there

exists a diffeomorphism h of anopen neighborhood of p
onto an open

subset of IR suchthat fh is on its domain the projection IRIR SIR

AIR

iiii i
n

i
c s sIRM

it

EfIpl

Exercise 4 Show that as promised
earlier this meansthatfor ahypersurface

M f a of a smooth function f IR SIR whee Pptto for

allpen this equips each tangent space IM with a local chart

for M



1.3 The tangent bundle

The collectionof all the tangent spaces ofan m
dimensional manifold forms a

2m dimensional manifold

Definition The tangentbundle TM of an M
dimensional smoothmanifold

M is the set

TM Gnu seeM ve TM

equipped with the following
smooth atlas

Let U o be a chat for M We get a chart

DO TU s GlutxiRM

au i s Com Dh
U s IR

Dad tall sTomRm e 1pm
lives in TheIR

I IR

i

Fifi

soul

g
diffeo

s
TS I S TIR
TS SaxIR



Exercise 1 I didn't
saywhat

the topology on TM is We define

a set NETM to be open if for any
chart Mio of M

Dq M is open in Iran
Check that this indeed defines a

topology
and that the

chart maps Dol TU splularm

are homeomorphisms

With respect to this smooth atlas
the projection mop

it TM SM III M
is smooth Excise 2

heck

Definition A smooth vector field on M is a smooth mop X M TM

which is a section of it i.e To X idm ie

X e TM fr all seem



Example Let Uof be a chart of M written as

U s 4calERM

p i sGa poem

Then for each pell we getthe
coordinate tangent vectors

Elp i Enl e TM

y
standard basis o I s o of IR

defined as

g
p

Doyle Ji
pi t O it

as 417
6 is

These form a basis for TM andeach of is a smooth vectorfield

on UEM

Lonna A vector field X an M is smooth if and only if when we

expand it relative to the g basis
coming

from a coordinate chat U i.e

write

Xp X pl f
t Xmp off

then each component function Xi is smooth on U



Example Express the latitude longitude dodo vector fields relatia to

the stereographic projection
from northpole docdy vector fields

I

F

A

g
Italia

Method

In the Guy
coordinate

system we must
compute A do A dy

We know

Y Sindcost

Y sindsing

2 coso

ay
x

loose
sindioso sindsing

Therefore the curve ee t in the 0,0 system givesby

Ole Do t 014 4

becomes the following come
in the ily system

sina.ttsosdo
ya sig.ttoIfscltlI iosOutt



1,1 t ya 1 188
a on

l sosdolcos ocosfotsin0ocosdosindoe.y

11 cost 2

ie in Tps theseinternsfundin

atone
e

fintermsofGuy

11 cost 2

t iOiid

Method 2 for a smooth function f
computed off Off Ofdy d f

Eod dydy f

o do Igo
t dydy

sindsing d a Sindocostody

1 cost l cord



Hairy ball
theorem There is no smooth nowhere

vanishing vector field on 52

or onany
evendimensional

raw sphere
I 11Hii11 1
11I

I ly



4 Vector bundles

The tangentbundle TM of
a manifold M is not just a smooth

manifold

it comes equipped
with a projection map

IT TM SM

in such a way
that each fiber T t Tim has a vector space

structure

It is a bundle of vector spaces

Definition A smooth real vector bundle of rank h over a manifold M is

a collection of K
dimensional real vector spaces

E seem

together with a smooth atlas on the totalspace E InE suchthat

the projection map IT E sM is smooth and such that Mcan

becoveredby opensets U
whereeach U is equippedwith a diffeomorphism

Y Ela UHR

which tommuteswiththeprojection mapsonto U
andwhich restricts to a

linear isomorphism of vector spaces

µ E
E

s IR

for each x ell



Eaf y

l Fifa
IR

T5 s2x

s
but locally it isme

TSY I U x R2
Examples

The tangent bundle TM of a manifold is avector
bundle ofrankm

The trivial bundle MxIR is a rank k vector
bundle

Thenormal bundle NM of a hypersurface M e IR is a vector

bundleof rank 1

M

Exercise 1 Check thisWhat is a smoothatlasfor NM



If E is a smooth vector
bundle over M we write

M E smooth sections of E

Slight abuseof notation



5 Multilinear algebra

Workthrough Looijenga
appendix AI A3 by yourself

In summary

For
any

vector space V we have thedual space

V e Hom V IR

If ei i t n is a basis for V ther

e i t n e e Si

is a basis for V called thedual basis of le
Exercise 1 Provethis

For
any

set X we havethe vector space

IRIX all formal linear combinations are
t anex

Iin X et al i anfIR neIN



For any
vector spaces V and W we have the tensor product space

VOW IRCVXW

I

where I is thesubspace spanned by vectors of theform

EcutugWI
E
ViWI Chain U YW 7VOW

ecuwitwy_ecvini eww4qitvzlwaCsuv.wKevin
UOW V20

ecuhw Kelvin

We write the equivalence class Leavin as vow

Note Not every vector in
Vow is of the form vow a general

elementwill be a linear
combination of such elements

Exercise2 Let V span e ea
Consider

u e oe t Gee e Voll

Prove that U cannot be written inthe form you forVivaeV

If en i em is a basis for V
and fi if is a basisforW

ther
e f it m it n

is a basis for VOW Exercise 3
Prove this

Contrast VAW Yw VellWEW Basis ei o o f
din UW dimV dimW



For any
vector space V we havethe tensor algebra

TW q
this meansVoid

R V toy You o
where on productvectors the multiplication is defined by

V2 304,05 4020304Us

andextended to TN by linearity

For
any

vector space V we have the exterior algebra

g

Itv wowed
ACV TCU

where I is the subspace spared by
vectis'ffffitway

a stammering v u Vu he N Vit In
some

tensor

So we have

Au MV n v MV n v o

IR O V MV A V

The equivalence class of LV oval in NV is written 41 Nn

Note that V N V2N why



If ei it m is a basis of V then

Ci nei n ne Is i s iz c c inem

is a basis for M V

Exercise 4 Show thatof any finite
dimensional vector space VandW

there is a canonical isomorphism ie independentof a choiceof
basis

VOW E Hom VW

Exercise 5 If A V sW is a linear map we define its 6th

exterior power

ACA MCU Mw

on wedge products by
Vin nun s Au n nAva

and then extendthis definition to allof A V by linearity If dimV m

and A V V is a linear map show that

MCA della idan

This gives us a basisfree definition of the
determinant

dimV M A V o Wine basisfor AV



Let en n em be a basis for V and
y ga MEA

A V V Die Die
detA det A m dim

t.ESH.on An

MA ein nem Ae n nAen

IfAine n n EAimmei

if inti Ain
Aimmei n nein

Eff ion Amon ein nem

A I I Ae Ae

Lane tag la h are t Anes

eine D

ease eine



Geometric interpretation of wedge products

VAW WN

v nw Un Wttv

Unw
oriented area element spanned

by V andW

FIRÉE.mn
un

n

ji

NV G area functionals onV



Moreover for any finite
dimensional vector space V we have a

canonical linear isomorphism

t nut's fir
defined on wedge vectors by

Tff n nfu un.nu jEgfoy a for us foin un

For instance suppose V is 2 dimensional Suppose

enea is a basis for V

Ther

e ed is the dual basis forV

Also

eine is a basis for MV

Let's calculate Thenet e y Well

Thene eines Eel t.EE
I

We conclude that The ne is the dual basis of eine inAV
t



Since

Vi Va EVV n Ava
E A V

represents a Kdimensional oriented area
elements in V

I É
rink

we
should therefore think of something in MY Mv

as a measuringstick on Kdimensional orientedvolume elements inV



1.6 Differentialforms

Given a smoothmanifold M recall we have the tangent bundle TM SM

Tom

M

And a smoothvector field is a smooth section X M TM of the

tangent
bundle i.e a smooth selectionof a vector

Xp e TM U peM

realm C MTM

Now we have learnt functorial ways to
construct new vectorspaces fromold

dualvector space tensor products wedge products So we also had

the cotangent
bundle TM sM whose fiber vectorspace at peM is

TIM GM HomTM IR

A smooth I form on M is a smooth section a of TM

Moregenerally we
have the Kthexteriorpowerbundle ATM whose fibervector

space at pen is MIA
V MV IR



Definition A smooth Kform on a manifold M is a smooth section

co of A TIM We write MCM for the vector spaceof
smooth kforms

on M ie MCM CTM MTM

So a k form we RUM consists of a smooth selectionof a vector

Wp E A TPM pen

and is hence a measuring
stick on Kdimensional oriented volumeelements

in TM for each pen In particular you can integrate
we RCM

over a Kdimensional submanifold ofM but we don't need this rightnow

O forms MCM CCMR

A smooth function f M SIR when expressed in a local

Y
Ir ij



forms for all p ell we have the coordinate tangent vector basis

D p
dam E Tpm

i
t i
I i

So at each pen we have the dual basis

aka
p

ahem
p
c we could alsowrite

as Ip

So locally on U a tform can e written as

w wGa pen dis t t Wnba in dem

k forms Similarly for any
coordinate chart

daily inflict as i c einem

Ntp'M and so
every
wed M can be

is a basis for
expanded locally in the

coordinate chart as

w E W

isina.ciem
is in m hi nda n indein



Example M IR

o form f flay z

1form a X Gaye die Ayling dy t 9 Gay2 42

2 form B BGayedyndz t Blinge donde play Indy

3 form W Whyz dandyndz

Pullback of forms

If
Y M IN

is a smooth mop then we get the pullback map

µ MN SMM

defined via

ye a yn na w Yu n n un

M N



7 The exterior derivative

here is a linear map coordinate free

d film N m
definition

defined by
f up foffal df t

where y is a curve representing
veTM

t.ir
to

Exercise I Check f p is welldefined ie only depends on the

equivalence class of y

Locally if sa poem are coordinates in a chart for M then

f p FGs pen
and

If JI che t fin den

Exercise 2 Check this



In particular each coordinate of is a smooth function on UEM

We calidate

d the coordinatefunction i 4Idual
basisvectortaxi

Proof d thecoordinate function sci dog

It k the path where weonlycharge of

Sis O

We also check that the liner mop

d RM s N M

Satisfies the Leibniz rule

dffg fly golf

Proof Locally

dfg 91 g fg dei

E I 59 da



I II da
t gEIJIhi

Idg golf o

Also if Y
MINT

is a smooth map
and f e ro N then

Mdt duff f Y

AR
cheat At pen let V TM O.ATLus v df Hr

fr Yu

I
M N

RUS v d UI v

d foy v

foul v
f Wr Chain rule

O



We can extend d to a linear map exterior derivative

d film s N't m

as follows Each Kform is locally a sum of forms of
thefrm

ExciseCheckthat
f doc n nakin

dw does notdepend

We define on thecoordinate

dw Eif dgndii1 h

andextend the definition to all of R m by linearity

Lemma 42 0 ie the composite Rua
d hatin

d

pity
is Zero

Proof On a form of the form

W f dei n nothin

we have

dw
y
die doli ndilin

so dew d't doindog dei n nahin
antisymmetric

JSthenic by Clairaut'stheorem Fim

Ej fidn.IEg
okindxindsci n ndsiig



Example For M IR recall

o form f fay 2 I Gundy de

1form a X Gaye die t dyGuy dy t 9 Gag2 42

2 form B Playe dyda t Blinge danda BGayieldindy

p Bn By Bel

3 form W wGny dxndyndz.y
y

so es adf.fi fgadf

no din
f 1 df die toddy fda

h
d or

a da fInIitfIdyndntfIdandtfyd.ndy

of fydacy

dgchindz dogdynde
to

E dandy I g dad



Ey É donde

f
d
f

p BGaye dyndz t Blinge danda BGayieldindy

p is dB Gg dy E
chindyndz

On IR we can identify

roar can

t resting
778

n'CM

Nik vecting

akin c.int
opxry
J



Example For M 52 consider fbi x

ny

iii

Since x sinocosol in G Y
coordinate system

oh Ide t O dy

1.1
40 d do

o do g do
cosocosydo sindsingdo



2.1 Complex Manifolds and Holomorphic Mops

holomorphic

Definition An Mdimensional smoothatlas Vi dilist on a topological

space M is an open cover Ui of M together with local charts

homeomorphisms

Mi
E

s opensubset ofIRMM Em

yI maven

all higher partial
derivatives exist

satisfying for all Minus to
homophi f

and are
holomorph

o fi is a smooth map between open

subsets of EM

i

X
di

Em



holomorphic holomorph

A atlas on M allows us to say
when a function f M s IR is smooth

namely we
demand fr all charts Uioil that fool is a

sntihinophs

map from an opensubset of It to if
where we knowwhatthat means

A

MY
fool

IMC

holomorphic
Definition Two smooth atlases Uidoilies and VuYale on M

we equivalent if they agree on
which functions f M sad are smooth

G hot

Hausdorff 2ndcountable

Definition An MdimensionalSith manifold is a topologicalspace M equipped

with an equivalence classof an Mdimensional
stohimatias

complex



Definition A map h M sN betweensmooth manifolds M digit
and

N ViY isshaft if for all i j
Y oh o fi opensubsetof Iffy opensubsetofLM

is smooth

E
M Joli

fitted men
onholomorphic

A smooth mop hM N is called a diffeomorphism if h exists and

is smooth hot holomorphic

3 a



Example 52 IX4.2 e IR 922 1 is a sithmanifold

Hol atlas a Un 52 Cop 11

Q Un sIRMC stereographic projection
from northpole

Mi s X Yi

play 2k12g c I say
n

i y.IQ
Also

s e

e
Htin

É
Us 52 0,0

Js Us s IR

Witz YI

e
oh

n

e Ello



Example 2 Elp Idin subspaces of 623
z w Mdw

02196,073
n

where Z W dzdw

for all left

Can put charts on it as follows

U Go 3 e EP 2 03

do U
E
s E

z D I s E
127 L 12

U zu 3 e Elp 2 to

U so

E D E
2 17 L 12

Transition functions

2 I 1 27 I s

which is holomorphic on d u no 0



Indeed we have a holomorphic diffeomorphism

Y 52 Op
n 217 1 o

stereographi

projection

pomsouthpole q v43

Exercise 2 Check this

More generally

p l dimensional subspaces of E

can be equipped with a holomorphic
atlas in a similarway

Exercise 3 Supplythedetails

A Riemann surface is a f dimensional complex manifold



Example3

Every open set in C is a complex manifold ey

D 2 12k

Recall the Riemann mapping
theorem

Every
connected opensubset U E E

which is not all of E is

holomorphically in bijective correspondence with D

But E F D because

Igo Aut D 2 7 92 tb lap ibid
52 a

while

4 din
Aut E

2 saz tb a e Et bee

Liegroup



Example4 Suppose you
have a topological surface obtained by givingtogetherthe

edgesof a collection of Euclidean triangles together in pairs

eg

nitrate
I I I I

untie
a

b n

I
s

i

Thenyou can place
a holomorphic atlas on it as follows Let x

be

a point on the surface

If x is not a vertex or on an edge
choose a dish U

wound x lying entirely
in the triangle and usethe identity

chart



If x lieson an edge e but is not a vertex then there

are twotriangles havingedge
e The chart is the disk

obtained as two halfdisks joined together

i
s

If x is a vertex then consider the dishU
made upof

sectors composed out of all the triangles
incident on se

They span an angle x whichmight not equal at Map

2 I s z
I

so as to map U l l onto a dish in E

AI YE s

Exercise 3 Check that this is a holomorphic atlas



Example5 Algebraic curves Suppose we are given a polynomial plan

Set

x z W E 62 plzw o

Suppose that for all a e X Dp PrPw o o Notewhat

this condition means if Pw to
at 20Wo then near zowo we

can express w z in a holomorphic way by
the holomorphic version

of the Implicit
FunctionTheorem earlier

So we can parametrize the pointsof X using 2 as a local coordinate

2 I s Z W z

Similarly if Pw to at 2 w then we can locally express 2 w

and get a local parametrization Exercise
w i s Rw w

y
In this way

we get a holomorphic
atlas for X We callX

a smooth algebraiccurve



For example

pay w 22 y 2w W 22 0

Pictureoff in IR putaw2W p 22

Hht
N

Moregenerally in higher
dimensions a space ofthe form

X 2 2 e E pf2 2n to

for some polynomial pi whee ram 8 is maximal onX has a natura

holomorphic atlas we call it a smooth algebraic variety

The
way
to understand this is that the

Riemann surface X comes

with a projection map
onto each coordinate eg

T X s E

zW I S W

And so we think of X as a rigorous holomorphic construct

which expresses 2 as a multivated function of W

W i g I W



In our example this makes rigorous the function

W i s Mw

nw
was it w

92

e

This X E E is not a compact
Riemannsurface The compact

version X E 01Pa is obtained by homogenizing plzwl to a

homogenous polynomial Plt 2 w by adding powers of t eg

plzW 25 222W 23W W

Plt 2 W 25 2122W 23W2 EW

and then setting

Y t z w EEP Plt 2W o

will give us a compact Riemannsurface providing DP to ont

a smooth projectile algebraic curve



Note that

x.mg s
In our example the points at infinity are givenby

o z w 28 23w2 0

So we get three points
at infinity

I wa to W H

1
o o



Example 6 Quotient spaces If M is a complex manifold

and G is a group
which acts properly discontinuously on M then

Mfg is a Riemann surface inheriting the chats from
M

ie every pen has a neighborhood U such that

gold n U is empty ge

m

eg Aet a lattice a discrete subgroup of E Then

X oh

is a Riemann surface

o o o o w o o o o o o w o a o

o o o o w o o o o o o w o a o

o o o o w o o o o o o w o a o

o o o o w o e off o o w o a o

o o o o w o o o o o o w o a o

o o o o w o o o o o o w o a o

o o o o w o a o o o o w o a o



2.2 Almost Complex Structures

At every pelR we have the rotate counterclockwise by 90

map Jp TpIR Tyr

JP ar

of

Lemma A smooth map f IR sir is holomorphic

when thoughtof as a mop f
E E if and

only if

f Jp Jffer

for all per

JP ad

of

9

FIT

ff



Proof It is sufficient to check this on the basis

On dy

for TpIR Note that

Jon dy Joy dx

Write

flag ably vinyl

Then

Jd dy

gda t digdy

while

J fade 5 8D did

fed F ox

So

f Jon Q J fda e
dy I

and

g g



Similarly

f Joy Jffdy

yields the exact
same set of equations

f Joy f de

f d

1 0 s

J Ady J 8yd s

Eydy Ed
I I 8 dug

These are precisely the Cauchy
Riemann equations which are the

definition

of
f x.gl alkyl t idly

to be holomorphic
O



Definition An almost complex structure on a smooth real manifold M is

a smooth section J of Effigy satisfying Jp
idp on each

tangent space An almost complex manifold is a manifold equipped with an

almost complete structure

m

Example R2 where J Y on each tangent space ie

J on dy Joy die

Mtn where

JO dy Joy Ox

Any complex
manifold M has an almost complex structure

Let peM
Choose a holomorphic chart z zn

around p
Then

TGYi 22 Ya In Yn



are real coordinates wound p and we set

J Ox dy Joy Fi

Exercise I Check that this definition
does not depend on

the holomorphic chart used

The converse is not true in general
Not every almostcomplex

manifold can be equippedwith a holomorphic atlas

But much of the theory of compleat
manifolds only

needs

the underlying almost complex structure
and not the holomorphic

charts For instance the definitionof a
holomorphic map

Lemma A smooth map f M s N between complex manifolds is

holomorphic if and only if f preserves the almost complex
structure i.e

f Jp I ft f pen

Exercise2 Prove this

I R



Example Suppose M E IR is anoriented smooth surface
embedded in IR

Then M inherits an almost complex structure J by rotating
counterclocka

by
900 in each tangent space

Jp

y

Tem

M

What holomorphic chart is compatible
with J Well we have

the Gauss map

N M s 52

p i s outward unit normal vector atp

a an

M 52

It turns out that N is holomorphic as a mop
between almost

complex manifolds if butnotanyit M is a minimal surface i.e the

eigenvalues of the shape operator

Sp Tem s TM
N i s derivativeof N inthedirectionofV



are I k ie the principal curvatures are opposite



2.3 Some almostcomplex linearalgebra

Every real
vector space V has a complexification

Ve formal combinations v tina V be V

which is a complex vectorspace

Note that we can also write

Ve VOC
IR

via the identification for veV
V i s V07

in i s voi

If

en em

is a basis for the red
vector space V

e em

is a basis for the
complex vector space Ve

so V is an M dimensional real vector space

Ve is an M dimensional
complex vector space

Ve is a 2m dimensional real vector space



Moreover
any

linear map

A V IW

between real vector spaces extends to a complex linearmap

Ae Ve We

v tin I s Av Ava

Exercise I Check that Ae is a complexlinear map

Suppose we have a real finite dimensional vector space V

and a linear map

J V S V J id

Lemma We can find a basis for V of the form

e if tea Fa en fn

where Jei fi Jf e

Exercise2 Prove this

In particular this means the dimension of U must beeves



Now J id eigenvalues of J are ti So its

eigenvectors
don't live in V but rather in Ve In other

words we
extend J to a complex linear map

Jo Va Va

Vtiu I s Ju ti Ju

and then we can decompose Ve into the eigenspaces of Jo

Let's calculate these



J v tins i v tiny

Ju tiJu Va iv

V Ju

So V Eigg
v iJu ve V e Ve

and Vo Eiga u titu ve V3 E V

V e fi en.fm Jei fi
and we have decomposed

Ve e fi ni en f Jf e

Ve V von

it m
i t m

Note that we have an antilinear bijection

V sVon

W I s I



Oh so

Given a real2ndimensional vector space V we have its

complexification Ve which is a 2ndimensional complex

vector space

Given a real2ndimensional vector space V
and a

linear map

J V SV J id

we can decompose Ve intothe ti eigenspaces of Je

Vo V Vol

But given V J we can also regard the 2n
dimensional

real vector space V as an n dimensional
complex vector

space by defining scalar
multiplication by complex

numbers via

i v Ju

keep this in mind

1 0440 1 1200

2 00 32



2.4 Decomposition of forms

Given an almost complex manifold M J we can decompose the

complexification of each tangent space into the ti eigenspaces off

TpMOC Tp M Tp M

So the corplexified tangent
bundle naturally splits as

TM 0 T M To M



V V v0

V Hondo O

o y
five e flu o fr v e v

Nv qq.mvi.g.tt

V A

My End A0
am tf

IM J almost couples manifold

Tpp Jp id

Time I'M Him

n time Q 1a tin



i Holds on tangent
bundle and hence on section

R M E E Ma M

Locally in
a chart

y

a i 2m
9

Kitty
Intiyn

Quids damdy
basis for TPM

Jd dy Joy die

dz Q idg E Tp M E TM E

d I d tidy E Tp M E TM Of

Jd ida JOE Ida

Basis for Tpm00 dz i idem di i dem

i Have a
dual

basis for Timo IÉpg dejjidffenjon

Notice
dz die tidy
de da idy

si dritidyi I d idg

I Iti I



i Basis F RTFM e 1206in A Tim totem

find Tink Tiki

eg M is 4 realdin 2 couple din

Imo N'M find
basis Ida did dziidi.fi

basis
dandi
dandi
dzAdi

4 I 4 I

n4 01 I I
dzindzendzdgndi.net

danda nde chandinde
O

2 2

14 Moe 14 A 1 1 1014

T T Eddins Y



eg
a 3 form on M looks locally like

W f denah nah t f dandi ndi

tf dandindi tf de ndindi

fiftieth guy fail Zizi



2.5 Almost complex us Complex manifolds

When can we upgrade an almost complexmanifold MJ to a complex

manifold

y

almostcomplexmanifold MT complex manifold holomorphic atlas

infinitesimal structure liveson local structure lives on opensets
fongentspaces

Related
question

complexvalued

We'veseen that the kforms on every almost complex manifold MJ
decompose as

ACM o End M

Doesthe exterior derivative mop

d Jacmel snitme

respect this decomposition



To answer this we need to know some material about vector fields I
skippedearlier

Recall that for us a vector field is a smooth selection

Xp eTpm

of a vector from the tangent space at each peM And that VETM is

defined as an equivalence class of curves goingthrough p

Sk

In particular every
vector field X gives us a linear operate

tx cant seem

defined by

X f p off f yall y Xp

These linear
maps satisfy the Leibniz role



X fg XAg f Xly
This gives us an alternative

operator
theoretic

way to
define vector fields

Lemma A smooth vector field onM is the samethingas a
linear

operator

X CTM sCCM

which satisfies the Leibniz role

Exercise I Fill in the details of the proof C f Looijenga Prop 2.1

This operator theoretic viewpoint is very
useful for liebrackets

Definition The Liebracket of two smoothvector fields X and Yon
a smooth manifold M is

x Y f XY f YAH

Exercise 2 Show that XY is a vector field Hint use theoperator
theoretic description



The Lie bracket X Y measures the change in Y as wemore

along the integral curves of X but we dont need this rightnow

The Lie bracket of vector fields also gives us a new coordinate'tway

to define the exterior derivative of differential forms Recall that

currently our formula is

d 81 g dog n

that is if we N M to compute dw we choose a coordinate

chart Ga ien locally so that

w E W
Kik einen

in hi n nah

and then we set

dw E En d
Kin einem je

in dog dei n nah



Coordinatefree formula for exterior derivative d N M s fat m

dw Xo Xu G X w Xo ti tall
t Ey w Xi X Xo Xi Rj Xu

Exercise3Check that this formula at least agrees with our previous
formula in a coordinate chart

We are now ready togive the answer to ourfirst question aboutwhen

an almost complex manifold can beupgraded to a complex manifold

Newlander NirenbergTheorem An almostcomplex manifold M J can

be upgraded to a complex manifold ie equipped with a compatible holomorphic
atlas if andonly if J is integrable in the sensethat

V XY e CRMT M XY e CTM Tn

We can also give the answer to our secondquestion about how theexterior
derivative interacts with the decomposition of N M



Proposition Let MJ be an almostcomplex manifold The following are

equivalent

J is integrable

2 d N m E N M film

3 d RP9 m e Artham frat m
for all pig

Proof il a Let we R M XY E M T m

Then

dw x HEY YEH WCCW

w xD

o dw Xi o e x y e Ker w

o dN e 1210 f AN
for all XY e CCM to m

x y o



in

ie XY e CCM T M

a 3 Follows from Leibniz finda fur d on leform

Exercise 4 Checkthis

We RM ne NCM

d wry alway a G wndn
O



0

As a corollary we see that every 2dimensional almostcomplex manifold

M J is integrable since we must have

dNCM ERIN Monty
as 120 m No m o

In particular every
surface embedded in IR has a canonical complex

structure See example from Section 2.2

Puzzle Describe
geometrically the holomorphic coordinates on such a surface

we only know how to dothisfor a minimal surface



Puzzle Considerthe round torus Tais E IR as a complex manifold

We know it is holomorphically diffeomorphic to

6 24,4

for some tell Determine T aib

I

e



2.6The Dolbeault operators

So on a complex manifold we havelocal
holomorphiccoordinates 2 2m

and a pig form looks like

w E

ge

Wiiiip Iiis Kitimat in chin nd adj n adj
is i s LipEm

We can calculate dw in these holomorphic coordinates

d

Éing t.fi
tdintt

In other words since

d green soft m f M
del

we can write d d J
The Dilbert operators

d green s Nt M
J Nra M s frat m



Lemma let f M t be a smooth functionThe following areequivalent

i f is holomorphic
eCRM to M

2 If O

3 for every ZeCRM T m f o

Proof i 121 If If de

5 Jf o 6 off to t it m

s f is holomorphic

a 3 Z f df z
If z

o Jt O E U Ze CAMT'm 2 f 0

0

Lemma 02 0 di 80 0 82 0 regal
o

Lpemonfa Thedfollowing identities hold

i 850 8
gg IfIIfjI2 82 o

Proof

y
gym

th Y

MPHqt

d T



N f Upqt
d

z g

Recall on a smooth manifold the exterior derivative

Atm.ir I film.ir dsfhtilmp
Keep

closed fun

É o

II it raining Mmp Its naming

satisfies d o and we define the De Rham cohomology
as

Hir m Ker d remind or'm.nl I
In d oh Mir N Mint

Poincaré lemma Every dclosed kform w on a smooth manifold is locally
exact ie locally on a small enough open set U

W da on U



But this is not the case globally on M eg

roo du o why
p

Ms

Ms wdo

W Idf since otherwise

w Idf f p fly
p TO

but
fw

21

Indeed N S IRL

Similarly

We define the Dolbeault cohomology groups of a complex manifoldM
as

HP m Ker d Malm s Art ul
In o oral R Ml



The J Poincaré lemma A J closed form on a complex manifold

is locallyJ exact

explicitly we n M Jw o

Puzzle Describethe holomorphic lforms on the round torus Tab

To a complex manifold aficionado

genus y
dim holomorphic l forms on My

sun

din Ker J p spin
Riemann

III
is no d

h
T



Lemma idf lemma Let deNCM R Then

Locally Kiddo forda 0 and a er M
some qeCYU.IR

ie aEMMIR
e MCMEl V0 d for

Proof F Suppose a idea locally for some

ECCU.IR

da d 8 a

0 8 did

Ana na ago Eff
O

Also

I ing
idiot
L

i a is realvalued

Also clearly since a idiot we have a ed M



G Suppose he N Mir is closed i.e da o

i From usual Poincare lemma we know that locally

there exists f form P on U s t

a dB on U

We can decompose

BerilMJe R Me N M no m

p p t p

i

g II tend y
50 0 1 0

Since Jp 0 we know from the J
Poincare

lemma that locally we can write

poll Jf fettle e

But B B p poi

i if Of



o a of off
diff E
ids of uke 0 2Inf

0

Another look Suppose I have

a idiot e n u deodar

So if 2 3 tig are local holomorphic coordinates on U then

if dad

d old id
di 2 d tidy

o J'd
dads

Eg F 8 ig



fi's dyidy
if'd dy yOxidyu dyDin

Gin t iVju

Note Jiu long Yiu Yu

dy ndin doe tidy docu idy

die ndxatdysndyutifdy.no cbgdy

is a idgaf I ifdin

i Ea loin if.nl ohcjndxatdysndyutifdy robin dandy

Efts
mail.tn

tiffu cblindicatdyindyn a0ju dyjndica shindy

fufu daynahh t dy nyu din dying dogndyn



which is clearly a real 2 form and which is also closed tech

confirming the
theorem

In 2 real dimensions If d E MUIR then

idid oh flynche dandy

2 4 87 8 1 dandy

bad daddy
Laplacianof of

So the theorem is saying that any
closed real 2form of type in

ie

a iffy m real fain

locally can be expressed as

a I Antony chindy

In other words

a flay idendi
fling2chindy

I Onto Jchindy



So the theorem is saying that any
real smooth function

flay
can be expressed as the Laplacian of some of locally

f I do

which we know is actually true ie we need to
solve

the PDE Poisson'sequation

do 4f feCCU.IR

for 0 We can indeed solve
Poisson's

equation
For instance suppose

that U D the open unit dish
and suppose f extends continuously

to 05 5 Then the solution to is obtained using Green's

functions and the Poisson kernel

Glorysay floaty didy

y y

d inflection unitdish171141

taffeta
di

Poisson kernel onunitdish



2.7 Kahler manifolds

M J complex manifold

So we have at each real tangent space IM

Jp TM sTM Jp id

Wtf n in iddina

1g igid

Recallthat a Riemannian metric g on a smooth manifold M is a
Gmooth selection of an inner product gp on each tangent space IM
i.e geCM Thot'M such that forall p ell

gp TM TM s IR

is symmetric and positive definite gp v.v to and
gp un o v o

y
Gelvin innerproduct



Lemma Let

Vol sir

be a symmetric bilinear map on a real vector space satisfying

u u 20 for all v eV
V V iniectie

Then the following are equivalent u v l

C is nondegenerate ie uw off w v0

is positivedefinite i.e un o e v o

Proof Exercise I



Given M J and a Riemannianmetric g we
say
that g is

compatible with J if J preservesthe inner product i.e

g Jt Jy g xn

on each tangent space

Given a compatible Riemannian metric
g on M J wedefine

its fundamental form as

W XM g Jx Y XY eTM

Note also how w gets along with
J

w TX Ja g Jax Jy

g x JY

g JX Jay

g JX
Y

w XM



henna w is a real lil form

Proof Firstly w is actually a 2 form ie antisymmetric
since

w YX g TY x

g Tty Jt g
compatiblewithJ

g l Y TX

g Jvm

wail
In other words J preserves the fundamental form

Is w of type hi We need to check that

w XY to it Yet'M Yet'm

and w X Y to if X ft'M YET'M

Well we know that for all XY e TM

w Jt JY w XM



But if XY t T M then JX it Jy iY

w Jt JY w it in

want

why why why o

is similar

0

Similarly g is a lil tensor in the sense that

g 8,4 to if XyeTp'M

g till
0 if Xiyet M

Proof We always have g Jt 54 g Xml

So if JX it TY it then LUS RUS Lusruso



Example local calculation Let M be a complex manifold with
local coordinates 2n i i2m

Since we N M we have locally that dandi

2ichindyw if Egden
den

where win i w dz dz

ig Jdz din

g da din III
Note gu In so that gin

or equivalently

Wjw is a positive
definite mim Hermitianmatrix



So M J almost complex manifold

g
Riemannian metric on M compatiblewithJ

WEN'M fundamental form

Recall that a symplectic form on a smooth manifold M
is a 2 form we N M satisfying

W is nondegenerate at each pen

WfX Y O K Y eTM E XO

W is closed i.e dw o

The fundamental form w of a compatible Riemannian metric g
is nondegenerate since g is nondegenerate Is it closed

Definition A compatible Riemannian metric g on an a complex manifold

M J is called a Kahler metric if its fundamental form W

is closed

A Kahler manifold is a complexmanifold equipped with a Kahlermetric



ExercisedLet U be a real finite dimensional vector space

and we MVT Prove that the following are equivalent

1 W is nondegenerate ie

W V W to H w e v o

2 wrapup
to

Te MV ER
m IdinV
din 2m



We can phrase this condition on the Riemannian metric g
entirely in terms of MJ

Theorem Let M J be a complex manifold and g a Riemannian

metic on M compatible with J Let w be the fundamental

form of g The following are equivalent

I dw o

2 PJ 0 where D is theLeviCivita

in other words parallel transport is compatible
with J

i

TM
PG

sTM
Je f I ta
Tem

PCH Tam



So if M J g is a Kahler manifold then since the fundamental

form w XY g Jt Y is a Girlform we can write locally

w idiot deCTU Ir

This means we can express the metric as

NB the
metric

g 5 14is all this g g g d z
97Wh

wog Hillwhere
w XTY

gin gldz.dz

w da Jda

i w dz din

i i did Ogden

To
0zjdZu

So a Kahler metric is constructed locally from a singlesmooth

function Usually a Riemannian metric is constructed locallyfrom



several independent functions

At the moment we have

M J complex manifold

g
Riemannian metric is Kohler if

g Jt y gain
w 4,4 g Jt Y is closed

The other point of view is to start with

M W a symplectic manifold

J integrable almost complex structure sit

w JX JY W XY

Then
gXM w X JY is a Kahler metric

Exercise 3 Prove this



So said differently a Kohler manifold is M J g w whee

J is an integrable almost complex statue

g is a Riemannian metric compatiblewith J andW
w is a symplectic frm compatible with J andg

Example 1 Every embedded oriented surface M EIR naturally

inherits a Riemannian metric from the ambient space IR

i

And we know that M similarly
inherits a natural integrable

complex structure J

i



Is g a Kahler metric for M J Yes because its fundamental

form we N M must be closed i.e dw o since there

are no nonzero 3forms on M

Example 2 Let's work this out explicitly for 52 in the

0,0 coordinate
system

o

in
j

play sindoso sindsind coso

do If sosdioso cososing sind

do If
sindsing sinososo o



goo g dado
I

g pgod g do do o

o votg edn tsindddncgoogldo.d sing

ed do ed sinddo

set e fog do ed d
singxp
do

And so since e
J
ed ed Is ee

we have J E ifO
Joo Jo Jo sinddo

The fundamental form of g is

W Woo dondo

whee Woo g too do g doing 100



Ing
since since

i we sind do ndo

By definition this is the standard area 2form of 5 Note

w sinddodd

0 0 4 0

21T f
Sind

f
41T

1

1

which is the area of 5

Let's write w in complex coordinates

z tonkeid Exrcis4l

i.dz seekeid do a itakeiddo



o dandz

seekeid do a itakeiddo
nGsecogéid do itangéiddo

isecostingdondo
cos0 I it105201

i talk dondol
costly W Cosa 21050 1

Il too
sinddon
Itcost

w L toso dznde
cos'tsinid

chindy ten see

Li cos F dandi

2

1 122 2
42 42 since 2 tankeid

i 1212 tardy

4 chandy

tangy



From this calculation we also see that as expected

w 1080

forthesmooth real function 2,2 210g 1421

Check

2

We also find one more
way

to compute the integral of

w over 52 since now we can express it as an integral

over IR

ftp.t.net



Mfg did

at2J rdr Let u Hr

potto't i du aids

4 1 4t u

41T



Example 3 IRIE with standard complex structure Then the

Euclidean metric g is Kahler

yn
or an glow Jw g uw

w ondy g toadyx

g dyed a

w dandy closed

Can write this as

w dandi

detidy n dx idy

2ichindy

candy



w idea

Yes for 0 121212

1222

Check id80 I Elia di

If adz

I dande
W

Similarly on IRM Em

w dandy damndym

I Ey dyndi

idiot of 12.1



Example 4 Elp

We saw in example 2 that EP is a Kohler manifold

In local ionplex coordinates i.e on the chart Uo whee Wo O

No wow i s z To

the Kohler potential of was

012,2 210g I
1212

The factor of 2 doesn't look right from
a holomorphic perspective

so let's drop it Also let's write it more invariantly

to U s E

Wowill slog 1 4121

Similarly in the
other chart U whee W.to we had

U s 0
wow I slog

It El

Note that on Vonk to does not agree
with 0 instead

do log



So the functions

Ui SE

don't glue together to give a globally
defined function on CP

However the 2 forms

w idol and w idea

do agree on Don since

ILM o on Uono

JJ log 1212
in U chat

Of E di

O

Hence we do get a globally
defined 2formW on Elf

w wieMui R Wo
uno

W
now

Vi

In summary
the Kohler form on EP is given locally by

W Happ
dude I w

21T



Similarly on EP we have the charts

U Wi to Wo wi Wn to E i i Ww Wait it
Y Y Fit E

and the Kahler potentials on each Ui are

Ui IR

wow malts log É E4

and we define a global 2form w on EP via

w
u

idiot

Exercise 5a check w is welldefined as a global 2form

b Compute w in one of the charts given by

the local
coordinates 2 2n



M w symplectic manifold

Vol e Ram M

Volw Wm to Liouville form

at each pen Joni

Man g
Riemannian

manifold

Vol e NUM

Let pen Let

er i Can

be
antoithonormal basis for TM Has dualbasis

e edm

Vol i e n ne

d e t IM 1103 DD
I IR o



Definition An orientation on an n dimensional real vector space

V is a choice

or E M a 2 elementset as MV
is a l dimension
vectorspace

whee wow if W hw for some k o

We say an ordered basis er pen for V is oriented if

ein men or

Exercise 6 Suppose that V is an ndimensional real inner product space

equipped with an orientation Show that the
formula

Vol e n ne

where e en is an
oriented orthonormal basis for V is independent

ofthe choice of
oriented orthonormal basis

Lemma On a Kahler manifold M J g w

Volw Vol

Proof In local coordinates 2 12m whee 2 Kitty we

have



w if hjudz.nozn g fu hjudz.dz

where his j l m is a
Hermitian matrix Now

Volw Wn
m

in y
hun dyndia n nfgnnhjnumdz.mn din

Exercise

G
in h dandi n dm'd

Use G 2m deth dandy n nokmndyn

idandi
2chindy

On the other hand an orthonormal basis for IM is

Exercise 8
I e fi it m

with dual basis

ei fi

So that
Vol e'if n nemnfm

deter L 2mdeth dandy n nobimndym



Vola
D



3Complex LineBundles with Correction

3.1Cocycle data for complex line bundles Recall

A complex line bundle over a smooth manifold M is a l dimensional
complex vector bundle it L M

A smooth section of a line bundle h is a smooth mop

s M s L

such that Tos idm

Two line bundles L and L ave M are isomorphic if there
exists a diffeomorphism of making the following diagram commute

L t s L

T

y
e
t

and which restricts to a linear isomorphism

L L

on each fiber



I want to phrase allof the above in terms of local data cocycles

Firstly given a
linebundle L overM Let Uilies be an open

cover of M with local trivializations

Vi Ll Uixf

Then for each iet we get a local section sie Ui L by

site V x s

effin
I

P

On Uino we will have

5 gig si

for the transition functions
gig VinUj E defined as gig



Note that in terms of the original local trivializations Ui Ui
of the line bundle we can write

Vjof Ui E Up.tt
x z 64 112

where Ui Vinu etc

Lemma The transition functions gi satisfy the following
cocycle conditions

gi I on Ui

gijgji 1 on Ui

gijgjugui
l on Uijn

Exercise I Prove this



Example Consider S and L a square root of the tangentbundle

I I I Tie IR either

Lio IRfeisty

this is a real line bundle but we can tenser it with E to
make it a complex line bundle

L does not have a global nonvanishing
smooth section but it does

have local ones

11111

on

said

so eid e Oath

u silent

So eid e Oath

so
for a o f on Mons f

s

for xco



So the transition function is

go
i do n U s 0

go ti if x o

l if x co



Exand Consider the tangent bundle of 52

DJ

Ek

Each tangent space is naturally a l dimensional complex vectorspace

using the complex structure J

Exercise 1 Work out the transition functions of this bundle
using

the stereographic projection from north and south pole charts



The transition functions completely
encode the line bundle up to isomorphism

Definition Let M Ui Gi be the dataof

a smooth manifold M
an open covering Ui
smooth functions gig Ui s E satisfying

the cocycle conditions

Then we define the line bundle

M Ui gii If Ui G n

whee x 21 x gijk 2

Exercise2Check thevalidityof thisconstruction Wheredothecocycle
conditionsget used



Proposition het L M be a line bundle with local trivialization

UiUi Then there is a canonical isomorphism

L s MUi gig
u i s Hill a

Exercise 3 Check this

this allows usto express sections of L in termsof cocycle date

Proposition Under theabove isomorphism a smooth section s of L
corresponds to a collection of smooth

fuctionsptisffsts
fi Ui s E s

Firm
satisfying

gj.fi on Ui

Exercise 4 Check this



Example For the square root of the tangent bundle of 5 line

bundle L earlier a smooth section of L corresponds to
a pair of smooth functions

fo U IR f U s IR

such that on Uonu
Uu Ul oo

fi fi tf tf OO

We can say
that a smooth section of corresponds to

a smooth function

If Co an s 0

having antiperiodic boundary conditions flat flo

Note that such a function must be zero somewhere which

shows that L is nontrivial as a real bundle

Excises Is LOG nontrivial as a complex line bundle



We can also say
when two line bundles constructed from cocycles

will be isomorphic

Lemma Let M Ui gist and M Ui gist be

cocycle data Then they are isomorphic if and only if the
exist nonvanishing

smooth functions

hi Ui s E

such that

gig hg gig on Ui

Exerciseb Prove this



3.2 Cohomological classificationof linebundles

See Schoiterloher Lecture notes ingeometric quantization appendix E

Definition Let X be a topological space and Uil an open cover
A tech k cochain i'with values in a discrete abelian

group A is
a family of locally constant functions

M Hi in di n nVin A

We write the collection of Cech cochains as X Ui A

There is a coboundary mop

AN
S C X oilAl E X Ui A

IÉg I 3 c
defined by

5 at 8 o Intalk

Sn in EG ni iii i
which squares to zero i.e 82 0

Exercise I Check that 82 0



We define the Kth Cech cohomology group of X subordinate

to the open cover Ui as

A X Ui A Ker g 2 Zay
In 8 2 s24

If Vi et is a refinement of Ui ie for every jet
there exists it e I such that Y Ellie then there is a natural

homomorphism

H X Ui A MYX Nili A

We define the 4th Cech cohomology group of X with
coefficients in A as the direct limit i e

H X A lin
opencoversus

U Al

Happily if U Ui is a Leay cover lie all intersections
Dion n Vin de contractible then we have a natural isomorphism

H X N A ACHA



Example On S

O

is a Leray cover A ochain with coefficients in Z say is
a collection of 3 integers

Mi 2

Its coboundary is

Sn Ga Mi Mo on Uo

Salo Na Mo on Voa

y Ma N on Un

So Sy o E Mo N 72

So V15.2 Z

Exercise 2 Compute N S 2 in a similar way



Theorem Let M be a topological space Then there is a natural

bijection

Isomorphism classes of
complex line bunde how m

H Miz

Proof the bijection is given at the levelof cocycle data by

L Vi Igi i s Rin e 2 Vinunifty

where M is defined as follows On VinU we have

smooth functions

gig Uino s E

satisfying

gijgjugui
t

on Vinknun

Since Vint is contractible we can take the log of gig on Vink
and it will satisfy

loggi t log gu t log gai n anti



on Vinonun This integer hi is our tech cocycle Thatis

Mi n ish on VinU nun

Exercise 3 Fill in the restof this proof D



Example For the square root line bundle on S

egg
1g

Take log go Ii

Then eg on VonVink

log ga t log gu loggro

Ti t o ti to

At any rate n o in 145121



It turns out that on a smooth manifold M Cech cohomology

with coefficients in IR is the same as De Rhamcohomology

Theorem On a smooth manifold M there is a natural isomorphism

TV Mar Mir HMilR

Proof We will only write
down the map for k2 Taberword

Choose a Levay cover Ui of M

Let W e UdrMilk Let weNMir be a representativefoW

Since each open set Ui is contractible we have

dw o on Ui
w dB on Ui

for 1forms pi eMilliR Similarly

d Bi p w w on Ainu

Bi p I fi on Vint



for Oforms fi e Illini R Now

dffi t fin fail to on Uininth

and here

Rijn fi fin t fu E IR islocally constant on Uintinth

We have Sy o on Vinuno Ve

Set ECW y

0

Putting these two results together gives a map

Isomorphism classes of
sunken line bunde how m

a integral
elements in

HIM A film 2

whee the integral elements in HdrMiIR are the classesof
the forms such that

Sw e Z for all oriented surfaces EM
a



3.3 Holomorphic line bundles

Definition A complex line bundle it L M over a complex manifold

is a holomorphic linebundle if L is equipped with thestructure

of a complex manifold and it is a holomorphic map

Recall thatthe coyote data for a smooth topological line bundle

L over a smooth manifold M is given by an open covering Ui

of M and transition functions

gig dink A

satisfying

gi t onUi

gig t on Vink

gigougui l on Vinknth

Similarly the data of a holomorphic line bundle is thesame except
that the transition functions gi must be holomorphic



Example Since

CIP 7 dimensional subspaces of E

there is a natural tautological linebundle t over CP

Tel
te l
2 n

g

Ep

e
920

2

Said differently

t ku le EP ve l

We have local trivializations as follows OnOo whee 2040

Yo Tla U xo y
in 2

1 z 16,21 i s 127 d 1

1 02



while on Ui 2 r

Y tha s U xe
1 of

92

w m2,11
I s Ewi M ed

So the local sections are

So 123 1,2 on U

S CwD wi on U

and the transition functions are given by

5 go so on Uonu

ie S 127 5 tin

E I

1,2

So
123



This is a holomorphic function so T is a holomorphic
line bundle

A holomorphic section s of t will take the form

Stu fo so on Uo

Sly f s on U

And we need

toso f s on bond

ie fog on Von

In terms of the charts

do U E E q U E
121 2 z to 2

if we set

fi fi of



we therefore need

fo 8 27 go 2027

fi 20 2 on bond

ie

g of 2.2.7 20
2 on Von

o 4 2027

ie f k

fifty
2 an bono

ie.EE 4aUI

ie we need holomorphic factions

fit O so



satisfying

f z 2 f z on Ello

Is this possible Well we can expand

fo go tap f b t biz t

so we need on Ello

bot b 2 t 2 ao ta z t

doz 9,22

which has the unique solution a bi o for all i

so Holler t 03

On the other hand

Hol EP er E check

and here is 2 dimensional



3.3 Connections on line bundles

Definition Let L M be a complex line bundle over a smooth

manifold A connection D an L consists of the data of

Bs e Co ML

for every XeCMTm se CRM L satisfying

Brgy s ffs gts
Dx fs Xf s t f Is

Given local trivializations fr I with accompanying nonvanishing
local sections s on Ui we can write

Is AXIS

for some l forms a EN Ui Notice that on Uino

S gigSi

o DxSj Dx gi s



Mjg dgis.lt

sitgisHXlsiiogijdj
dgijtgi di on Vint

so Lj L t dgij
gig

on Hing

Conversely given a collectionof 1forms died Ui satisfying

we can construct a unique connection whose associated

local l forms are the di So

connection D on ML l forms di onUi satisfying

Lemma the abelian
group

NMO acts freely
and transitively

on the set
Conn L of connections on L via the formula

B O s Ds pals

Proof Firstly check whether PD is indeed a connection

Satisfies

Satisfies



Check

PT Fs Dfs BA fs

TCAs f As PA fs

Xf s tf BO s

Group action

P pt p'tp p

Actin is free

Suppose B D D

R O s Is for all X's

Is pals Qs

pals so for all X s

B o

Action is transitive

Given connections D D choose local nonvanishing

sections Si on Ui We can write



Ds di x Si

Dx's Li t s

for I forms di on Ui Now consider the l formsB

M 776 4gal
si

On Uj we know that

2 ai t dloggi

dj ai t dlogCgi

so Bj Nj Nj
dit di

Bi

so the Bi glue together to give
a globally

welldefined lform

In other words

p Dl BN

ie pop D
O



Definition The curvature of a connection D on a line bundle is

curule da e Nal
whee Ki are the local l forms for D relative to a local

trivialization Si



What does this mean Well although Lita since

Lj L t dgij
gig

on Hing

we notice that

da da t
dfdg.is

Fidgi dgijndgi 0

gig
da

so we get a globally welldefined 2form curb

Lemma Curr P is a closed 2 form on M

Proof Clear because locally corr O dai so

dcurrlo dad o on Ui
p



Lemma The cohomology class

corr o E M Mio

is independent of the choice of
connection Don L It

is called the 1st
Chern class of L in de Rham cohomology

Proof If P is another connection then we know that

p J t p

for some 1 form B That means locally in terms of the

local t forms
p s 2 x Si

Pfs Htp A s

ie
corr P d atp

dai dB on Ui

it
curry curule dB onM

ie Court fora



A correction D on a complex line bundle L defines a

parallel transport linear map

PG L shy

associated to any
smooth curve y on SM plots glity

Dryly

How do we do this It is defined as the
solution tothe

DDE for a section sht over yet

Pic sht o

In other words

Peachy L S L

V I s unique soln sci to
ODE

84454 O

Scot V



What happens when we paralleltransport wound
closed loops We

get a linear map

pg h she

which is just multiplication by a complex number calledthe

holonomy of the connection
around y

PG Holy idea

Note that Holly

is independent ofthe basepoint

x Why

Lemma Holly e where E is any surface
in M

bounded by j

Proof Locally Is di x si so that parallel transport in

Ui is just the integral of ai
M

pop eiti



Why
Well in Ui the ODE we must solve is

Diy 5k O slo v

sa

We can write

set É s e

where Si is our local section on Ui i.e Dsi dials

So our DE in terms of flt is

Gia sit o E Dy fits to

iefdffy.nl s t etdik't

If ja ix fila
dt

f yea ifaificsilds

fly flat a ifdignity

In other words in Ui parallel transport is given by integratingdi



misfit

In general we would break up y into paths fi
in

each Ui And then in each Ui we could
implement Stokeshenna

Ja fda
de si

which leads to the formula Details needed

O



Corollary In cont NMiR is an integral 2 form

Proof We need to prove that integrating
the 2 form

2iticuru o

over closed surfaces E in M gives an integer
Well by

the previous formula for holonomy we
know

é notte

o
cont n 2iti ne Z

O



We have shown mostof the following

Theorem Given a smooth manifold M the map

isomorphism classesof
complexlinebundles own

HrMiz

is given by
L I stifunt

where D is any
connection on L The 1st Chem

class of L

Moreover this mop is surjective



Final remarks

We start with smooth manifolds

Almost complex manifolds are nice examples of smooth
manifolds

Complex manifolds are nice examples of almost complex manifolds

Kahle manifolds are nice examples of complex manifolds

Integral Kahler
manifolds where the symplectic form w has

integral periods

are nice examples of Kahler manifolds

Indeed if our Kahler manifold M Jwig
has integral

w then we know from the above that there exists a

line bundle L with correction D such that curb Yw

So our Kahler data the symplectic form W arises from

a more primitive geometric
object the line bundle L with correction

Moreover we have the following



Kodaira embedding theorem A compact complex
manifold M admits

an embedding into projective space Ep if
and only if there exists

a line bundle L on M with correction D suchthat w icurulo

is a Kahler form on M

ie a compact complex
manifold admits an embedding into projective

space

it admits an integral Kohler metric

Even more is true

Chow's theorem Evy complex submanifold of projective space
admits

the structure of an algebraic variety

So we
have a remarkable correspondence between complex differential

geometry and algebraic geometry

Compact integral Kohler smooth projective

manifolds algebraic varieties


