Complex manifolds NGA course 2023
Bruce Bartlett
Lecture Notes
Main reference: Le Floch, A Brief Introduction to Borezin-Toeplitz Operators on Compact Kähler Manifolds, chaps 1-4

For smooth manifolds: - Looijenga, Notes on Smooth manifolds (chapter 1)
1.1. Smooth manifolds and smooth mops

Definition $A_{n} \quad n$-dimensional smooth atlas $\left(U_{i}, \phi_{i}\right)_{i \in I}$ on a topological space M is an open cove $\left(U_{i}\right)$ of M together with local charts (homeomorphisms)

satisfying, for all $U_{i} \cap U_{j} \neq \phi_{1}$

$$
\left.\phi_{j} \cdot \phi_{i}^{-1} \text { is a smooth map } \begin{array}{l}
\text { (between per } \\
\text { subsets of } \mathbb{R}^{m}
\end{array}\right)
$$

An atlas on M allows us to say when a function $f: M \longrightarrow \mathbb{R}$ is smooth: namely, we demand, for all charts $\left(U_{i}, \phi_{i}\right)$, that $f \circ \phi_{i}^{-1}$ is a smooth map (from on open subset of \mathbb{R}^{n} to \mathbb{R}, where we know what that means).

Definition Two smooth atlases $\left(U_{i}, \phi_{i}\right)_{i \in I}$ and $\left(V_{u}, \psi_{u}\right)_{j \in J}$ on M are equivalent if they agree on which functions $f: M \longrightarrow \mathbb{R}$ are smooth.
(Hausdorff, and countable)
Definition $A_{n} m$-dimensional smooth manifold is a "topological space M equipped with an equivalence class of an m-dimensional smooth atlas.

Definition A map $h: M \longrightarrow N$ between smooth manifolds $\left(M_{1}\left(u_{i}, \phi_{i}\right)\right)$ and $\left(N,\left(V_{j}, \psi_{j}\right)\right)$ is smooth if, fir all i, j,

$$
\psi_{j} \circ h \cdot \phi_{i}^{-1}: \text { open subset of } \mathbb{R}^{n} \longrightarrow \text { open sibrect of } \mathbb{R}^{n}
$$

is 5 goth.

A smooth map $h: M \rightarrow N$ is called a diffeomophism if h^{-1} exists and is smooth.

Example 1 $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ is a smooth monifold.
Smooth atlos: $U_{N}=S^{2} \backslash\{(0,0,-1)\}$
$\phi_{N}: U_{N} \xrightarrow{\cong} \mathbb{R}^{2} \quad$ slereographic projection from noth pole $(x, y, z) \longmapsto \frac{1}{1-2}(x, y)$

$$
\frac{1}{1+x^{2}+y^{2}}\left(2 x, 2 y, x^{2}+y^{2}-1\right) \longleftarrow(x, y)
$$

$$
\text { - } U_{5}=S^{2} \backslash\{0,0,1\}
$$

$$
\phi_{5}: U_{5} \cong \mathbb{R}^{2}
$$

$$
(x, y, 2) \longmapsto \frac{1}{1+2}(x, y)
$$

Exerise 1.b.

To check it is a smooth atlas, must cheder if the coordinate change map

$$
\phi_{5} \cdot \phi_{N}^{-1}: \mathbb{R}^{2} \backslash\{(0,0)\} \longrightarrow \mathbb{R}^{2} \backslash\{(0,0)\}
$$

is smooth. (Exercise ic)

As an example of a smooth function on S^{2}, consider

$$
\begin{aligned}
& f: S^{2} \longrightarrow \mathbb{R} \\
& (x, y, Z) \longmapsto Z
\end{aligned}
$$

Is it smooth? On the chart $\left(U_{N}, \phi_{N}\right)$, we compute:

$$
\begin{aligned}
f_{N}(x, y) & :=f \circ \phi_{N}^{-1}(x, y) \\
(x, y) & \stackrel{\phi_{N}^{-1}}{\longleftrightarrow} \frac{1}{1+x^{2}+y^{2}}\left(2 x, 2 y, x^{2}+y^{2}-1\right) \stackrel{f}{\longmapsto} \frac{x^{2}+y^{2}-1}{1+x^{2}+y^{2}}
\end{aligned}
$$

Is this a smooth map? Yes.

Exercise 2 Checle that the formulas for $\phi_{N}, \phi_{N}{ }^{-1}, \phi_{s}$ are correct and compute ϕ_{5}^{-1}. Check that the transition function (coordinate change map) $\phi_{N} \cdot \phi_{s}^{-1}$ is smooth [and also its inverse].

Example 2 (Will prove late) Given a smooth function

$$
f: \mathbb{R}^{m+1} \longrightarrow \mathbb{R}
$$

the m-dimensional hypersurface $M:=f^{-1}(c)$ will naturally be a smooth manifold precisely when $\nabla f \neq 0$ for all $x \in M$. A chart near $x \in M$ is defined by orthogonal projection onto $\left(\nabla_{x} f\right)^{\perp}$ (the tangent space at x... see later):

Morewer, the atlas dove has the following property: a map

$$
h: M \longrightarrow \mathbb{R}^{n}
$$

will be smooth precisely when h is the restriction of a smooth map

$$
H: U \longrightarrow \mathbb{R}^{n}
$$

where $U \subseteq \mathbb{R}^{m+1}$ is an open neighborhood of M in \mathbb{R}^{m+1}
Exercise 3. Prove this.
a) eg. can express S^{2} as a hyporsurface:

$$
\begin{aligned}
& f: \mathbb{R}^{3} \longrightarrow \mathbb{R} \\
&\left(x, y, y_{2}\right) \longmapsto x^{2}+y^{2}+z^{2} \\
& S^{2}:=f^{-1}(1)
\end{aligned}
$$

We have $\nabla_{f}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$

$$
=(2 x, 2 y, 2 z)
$$

$\neq 0$ for all points $(x, y, z) \in S^{2}$
$\therefore S^{2}$ navially inherits a smooth atlas.
Also, the properties of this atlas imply that eg.

$$
\begin{aligned}
& h: S^{2} \longmapsto \mathbb{R} \\
&(x, y, 2) \longmapsto x^{2}-\cos (y)
\end{aligned}
$$

is a smooth map.

Exercise 4. Why is h a smooth map?
b) The 2 -torus $T^{2} \leqslant \mathbb{R}^{3}$ can be expressed via the equation

$$
\left(2-\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2}=1
$$

Exercise 5. a) Check that T^{2} is naturally a smooth manifold.
b) Construct an explicit, non-constont smooth map $h: T \xrightarrow{ } \rightarrow S^{2}$ and check it is smooth.
1.2. Tangent spaces

Definition Let M be a smooth manifold and $x \in M$. The tangent space $T_{x} M$ is the set of equivalence classes of smooth curves

$$
\gamma:(-1,1) \longrightarrow M, \quad \gamma(0)=x \text {. }
$$

Two curves γ and σ are equivalent if, in some chart (U, φ) around x,

$$
\left.\frac{d}{d t}\right|_{t=0} \underbrace{\phi \cdot \gamma}_{\substack{\uparrow \\ a \\ \text { cure in }}}=\left.\frac{d}{d t}\right|_{t=0} \underbrace{\phi \cdot \sigma}_{\substack{\uparrow \\ a \\ \text { cure in } \\ R^{m}}}
$$

Exercise 1. Check that this equivalence relation is ackally on equivdence relation. (reflexive, symmetric, transitive)
Note that a chart (U, ϕ) gives us a bijection

$$
\begin{aligned}
& T_{x} M \longrightarrow \mathbb{R}^{m} \\
& {\left.[\gamma] \longmapsto \frac{d}{d t}\right|_{t=0} \phi \cdot \gamma}
\end{aligned}
$$

We equip $T_{x} M$ with the structure of a real vecter space by transporting it ouse from \mathbb{R}^{m} via this bijection, ie. we set:

$$
\begin{aligned}
k .[\gamma]: & =\left[\phi^{-1}(k \cdot \phi \cdot \gamma)\right] \\
{[\gamma]+[\sigma]: } & =\left[\phi^{-1}(\phi \cdot \gamma+\phi \circ \sigma)\right]
\end{aligned}
$$

Exercise 2. Check that this vector space sincture on $T_{x} M$ does not depend on the chart (U, ϕ).

Example If $M \subseteq \mathbb{R}^{m+1}$ is the hypersurface of a smooth map

$$
\begin{gathered}
f: M \longrightarrow \mathbb{R} \\
\text { (ie. } \left.\quad M=f^{-1}(c) \quad \text { for some } c\right)
\end{gathered}
$$

then we have a canonical linear identification:

$$
T_{x} M \cong\left\{v \in \mathbb{R}^{m+1}: \nabla_{x} f \cdot v=0\right\}
$$

Exercise 3. Prove this.
eg. For S^{2}, we have

$$
T_{p} S^{2} \cong\left\{V \in \mathbb{R}^{3}: \underset{\text { because }}{p \cdot v=(x, y, z)}=0\right\}^{V}
$$

For T^{2} :

Lenmai)A smooth map $f: M \longrightarrow N$ between smooth manifolds determines, for every $x \in M$, a liner map

$$
\begin{aligned}
& \text { defined by } \underset{\substack{\text { or just } \\
f_{x} \text { for } \\
\text { short }}}{\rightarrow 0_{x} f: T_{x} M \longrightarrow T_{f(x)} N .} \\
& {[\gamma] \longmapsto[f \circ \gamma]}
\end{aligned}
$$

ii) (Chain role) If $g: N \longrightarrow P$ is another smooth map, then

$$
D_{x}(g \cdot f)=D_{f(x)}(g) \cdot D_{x}(f)
$$

Proof i) Exercise.
ii)

$$
\begin{aligned}
D_{f(x)}(g)\left(D_{x}(f)([\gamma])\right) & =D_{f(x)}(g)\left(\left[f_{\circ}\right]\right) \\
& =[g \circ(f \circ \gamma)] \\
& =[(g \circ f) \circ \gamma] \\
& =D_{x}(g \cdot f)\left(\left[_{\gamma}\right]\right) .
\end{aligned}
$$

Note that when we think of \mathbb{R}^{n} as a smooth manifold (via the "identity" atlas), then for all $y \in \mathbb{R}^{m}$, we can canonically iderify

$$
T_{y} \mathbb{R}^{m} \cong \mathbb{R}^{m}
$$

$\left.[\gamma] \mapsto \frac{d}{d t}\right|_{\gamma=0} \longleftarrow$ this only makes sense because the wire γ is living in \mathbb{R}^{m}.

* (Extra) The Implicit Function Theorem Let $f: \mathbb{R}^{n+h} \longrightarrow \mathbb{R}^{m}$ be a smooth map, and suppose that at $p \in \mathbb{R}^{n+4}, D_{p} f$ is surjective. Then thee exists a diffeomorphism h of an open neighborhood of p onto an open subset of \mathbb{R}^{n} such that $f h^{-1}$ is on its domain the projection $\mathbb{R}^{m} \times \mathbb{R}^{h} \rightarrow \mathbb{R}^{h}$.

Exercise 4 Show that (as promised earlier) this means that for a hypersuffuce $M:=f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{m+1} \longrightarrow \mathbb{R}$ (where $\nabla_{p} f \neq 0$ for all $p \in \mathbb{M}$), this equips each tangent space $T_{P} M$ with a local chart for M.
1.3. The tangent bundle

The collection of all the tangent spaces of on m-dimensional manifold forms a $2 m$-dimensional manifold!

Definition The tangent bundle TM of an m-dimensional smooth manifold M is the set

$$
T M:=\left\{(x, v): x \in M, v \in T_{x} M\right\}
$$

equipped with the following smooth ot las:
Let (U, ϕ) be a chat for M. We get a chart

$$
\begin{aligned}
& 0 \phi: \quad T U \longrightarrow \phi(u) \times \mathbb{R}^{m} \\
&(x, v) \longmapsto\left(\phi(x), D_{x} \phi(v)\right) \\
& \phi: U \longrightarrow \mathbb{R}^{m} \\
& D_{x} \phi: T_{x} U \longrightarrow T_{\phi(x)} \longrightarrow \mathbb{R}^{n n} \cong \mathbb{R}^{m} \quad \text { lives in } T_{p(x)} \mathbb{R}^{n} \cong \mathbb{R}^{n} .
\end{aligned}
$$

Exercise 1. I didn't say what the topology on TM is. We define a set $\Omega \subseteq T M$ to be open if for any chart (U, ϕ) of M, $D_{\phi}(\Omega)$ is open in $\mathbb{R}^{2 m}$. Checle that this indeed defines a topology, and that the chart mops $D \phi: T U \longrightarrow \phi(u) \times \mathbb{R}^{m}$ are homeomorphisms.

With respect to this smooth atlas, the projection map

$$
\pi: T M \longrightarrow M \quad x \in M y
$$

is smooth. (Exercise 2.: Check!)
Definition A smooth vecter field on M is a smooth map $X: M \rightarrow T M$ which is a section of π, ie. $\pi \circ X=i d_{M}$, ie.

$$
X_{x} \in T_{x} M \text { for all } x \in M \text {. }
$$

Example Let (U, ϕ) be a chart of M, writhen as:

$$
\begin{aligned}
\phi: U & \cong \phi(u) \subseteq \mathbb{R}^{m} \\
p & \longrightarrow\left(x_{1}, \cdots, x_{m}\right)
\end{aligned}
$$

Then for each $p \in U$, we get the coordinate tangent vertus

$$
\left.\frac{\partial}{\partial x_{1}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial x_{m}}\right|_{p} \in \quad T_{p} M
$$

defined as

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}:=0_{0} \phi^{-1}\left(e_{i}\right)^{\text {standard basis }(0, \cdots, 1, \cdots, 0) \text { of } \mathbb{R}^{m}}=\left[\phi^{-1}\left(\gamma_{i}\right)\right]_{\gamma_{i}(t)=(0, \cdots, t, \cdots, 0)}
$$

These form a basis for $T_{p} M$, and each $\frac{\partial}{\partial x_{i}}$ is a smooth vector field on $U \subseteq M$.
Lemma A vecter field X on M is smooth if and only if, when we expand it relative to the $\frac{\partial}{\partial x_{i}}$ basis coming from a coordinate chat U, ie. write

$$
X_{p}=\left.X_{1}(p) \frac{\partial}{\partial x_{1}}\right|_{p}+\cdots+\left.X_{m}(p) \frac{\partial}{\partial x_{m}}\right|_{p}
$$

then each component function X_{i} is smooth on U.

Example Express the "latikude/longinde" $\partial_{\theta}, \partial_{\phi}$ vector fields relatie to the "stereographic projection from north pole" $\partial_{x}, \partial_{y}$ vectre fields.

Method I
In the (x, y) coordinate system, we must compute $A_{*}\left(\partial_{\theta}\right), A_{*}\left(\partial_{\phi}\right)$.
We know:

$$
\begin{aligned}
x= & \sin \theta \cos \phi \\
y & =\sin \theta \sin \phi \\
Z & =\cos \theta
\end{aligned} \Rightarrow
$$

Theefue the curve $e_{\theta}(t)$ in the (θ, ϕ) system given by

$$
\theta(t)=\theta_{0}+t, \phi(t)=\phi_{0}
$$

becomes the following cure in the (x, y)-system:

$$
x(t)=\frac{\sin \left(\theta_{0}+t\right) \cos \phi_{0}}{1-\cos \left(\theta_{0}+t\right)}, \quad y(t)=\frac{\sin \left(\theta_{0}+t\right) \sin \phi_{0}}{1-\cos \left(\theta_{0}+t\right)}
$$

$$
\begin{gathered}
\left.\frac{\partial}{d t}\right|_{t=0}(x(t), y(t))=\left.\left(\frac{\partial x}{\partial \theta}, \frac{\partial y}{\partial \theta}\right)\right|_{\left(\theta_{0}, \phi_{0}\right)} \\
=\frac{\left(1-\cos \theta_{0}\right) \cos \theta_{0} \cos \phi_{0}+\sin \theta_{0} \cos \phi_{0} \sin \theta_{0}}{\left(1-\cos \theta_{0}\right)^{2}} e_{x}
\end{gathered}
$$

we could/shoud express
ie. in $T_{p} S^{2}$, these in terms functions

$$
\partial_{\theta}=\frac{\frac{\left(1-\cos \theta_{0}\right) \cos \theta_{0} \cos \phi_{0}+\sin \theta_{0} \cos \phi_{0} \sin \theta_{0}}{\left(1-\cos \theta_{0}\right)^{2}} \partial_{x} \quad \text { in terms of }(x, y)}{+\frac{\left(1-\cos \theta_{0}\right) \cos \theta_{0} \sin \phi_{0}+\sin \theta_{0} \sin \phi_{0} \sin \theta_{0}}{\left(1-\cos \theta_{0}\right)^{2}} \partial_{y}}
$$

Method 2: For a smooth function f,

$$
\begin{aligned}
\left(\text { to compile } \partial_{\phi}\right) \quad \partial_{\phi} f & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \phi}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \phi} \partial_{x} \equiv \frac{\partial}{\partial x} \\
& =\left(\frac{\partial x}{\partial \phi} \partial_{x}+\frac{\partial y}{\partial \phi} \partial_{y}\right) f \\
\therefore \partial_{\phi} & =\frac{\partial x}{\partial \phi} \partial_{x}+\frac{\partial y}{\partial \phi} \partial_{y} \\
& =\frac{-\sin \theta_{0} \sin \phi_{0}}{1-\cos \theta_{0}} \partial_{x}+\frac{\sin \theta_{0} \cos \phi_{0}}{1-\cos \theta_{0}} \partial_{y}
\end{aligned}
$$

Hairy ball theorem There is no smooth nowhere-vanishing vector field on S2.

(or on any evor-dimensical Sphere).
1.4 Vector bundles

The tangent bundle TM of a manifold M is not just a smooth manifold: it comes equipped with a projection map

$$
\pi: T M \longrightarrow M
$$

in such a way that each fiber $\pi^{-1}(x)=T_{x} M$ has a vector space structure. It is a 'bundle of vector spaces'!

Definition A smooth real vector bundle of rook l le over a manifold M is a collection of k-dimensional real vector spaces

$$
E_{x}, \quad x \in M
$$

together with a smooth atlas on the total space $E:=\bigcup_{x \in M} E_{x}$ such that the projection map $\pi: E \longrightarrow M$ is smooth, and such that M can be covered by open sets U where each U is equipped with a diffeomorphisn

$$
\psi:\left.E\right|_{u} \cong U \times \mathbb{R}^{k}
$$

which commutes with the projection mops onto U, and which restricts to a linear isomorphism of vector spaces

$$
\psi_{x}: E_{x} \stackrel{s}{\longrightarrow} \mathbb{R}^{n}
$$

for each $x \in U$.

Examples

but locally it is tine $\left.T S^{2}\right|_{u} \cong U \times \mathbb{R}^{2}$

- The tangent bundle TM of a manifold is a vecte bundle of rank M.
- The trivial bundle $M \times \mathbb{R}^{h}$ is a conk k vector bundle.
- The normal bundle NM of a hypersurface $M \subseteq \mathbb{R}^{m+1}$ is a vector bundle of rankle 1 .

Exercise 1.
Check this. What is a smooth atlas for NM?

If E is a smooth vector bundle our M, we write

$$
C^{\infty}(M, E)=\{\text { smooth sections of } E\}
$$

(Slight abuse of notation!)
1.5. Mutrilinear algebra

Work through Looijenga appendix A.I-A. 3 by yourself!
In summary:

- For any vector space V, we have the dual space

$$
V^{*}:=\operatorname{Hom}(V, \mathbb{R})
$$

If $e_{i}, i=1 \ldots n$ is a basis for V, then

$$
e^{i}, \quad i=1 \ldots n \quad: e^{i}\left(e_{j}\right)=\delta_{i j}
$$

is a basis for V^{*}, called the dual basis of $\left\{e_{i}\right\}$.
Exercise 1. Prove this.

- For any set X, we have the vector space $\mathbb{R}[X]:=\left(\begin{array}{c}\text { all formal linear combinations } a_{1} e_{x_{1}}+\cdots+a_{n} e_{x_{n}} \\ x_{1}, \cdots, x_{n} \in X \\ a_{1}, \cdots, a_{n} \in \mathbb{R}, \quad n \in \mathbb{N}\end{array}\right\}$
- For any vecter spaces V and W, we have the tensor product space

$$
V \otimes W:=\frac{\mathbb{R}[V \times W]}{I}
$$

whee I is the subspace spanned by vectus of the form

$$
\begin{array}{lr}
\text { - } e_{\left(v,+v_{2}, w\right)}-e_{\left(v_{1}, w\right)}-e_{\left(v_{2}, w\right)} & \text { v®7\%w=7v®w } \\
\text { - } e_{\left(v, w_{1}+w_{2}\right)}-e_{\left(v, w_{1}\right)}-e_{\left(v, w_{2}\right)} & \left(v_{1}+v_{2}\right) \otimes w \\
\text { - } e_{(k v, w)}-k e_{(v, w)} & =v_{1} \otimes w+v_{2} \otimes v \\
\text { - } e_{(v, k w)}-k e_{(v, w)} &
\end{array}
$$

We write the equivalence class $\left[e_{(v, w)}\right]$ as $V \otimes W$.
Note: Not every vector in V\&W is of the form V®W! (a genera element will be a linear combination of such elements).

Exercise 2. Let $V=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ Consider

$$
v=e_{1} \nabla e_{2}+e_{2} \nabla e_{1} \quad \in V \nabla
$$

Prove that V cannot be written in the form $v_{1} \otimes v_{2}$ for $v_{1}, v_{2} \in V$.
If e_{1}, \cdots, e_{m} is a basis for V and f_{1}, \cdots, f_{n} is a basis for W, then

$$
e_{i} \otimes f_{j} \quad i=1 \ldots m, j=1 \ldots n
$$

is a basis for VoW. Exercise 3. Prove this.
Contrast: $V \times W=\{(v, w): V \in V, w \in W\} \quad$ Basis $\left(e_{i}, 0\right),\left(0, f_{j}\right)$ $\operatorname{dim}(V \times W)=\operatorname{dim} V+\operatorname{dim} W$.

- For any vector space V, we have the tensor algebra

$$
\begin{aligned}
T(V) & =\bigoplus_{k \geq 0} V^{\otimes k} \leftarrow \text { this means } \underbrace{V \otimes \cdots \otimes V}_{k} \\
& =(\mathbb{R}) \oplus(V) \oplus(V \otimes V) \oplus(V \otimes V \otimes V) \oplus \cdot
\end{aligned}
$$

where on product vectus the multiplication is defined by

$$
\left(V_{1} \otimes V_{2}\right) \cdot\left(V_{3} \otimes V_{4} \otimes V_{5}\right)=V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{4} \otimes V_{5} .
$$

and extended to $T(V)$ by linearity.

- For any vector space V, we have the exterior algebra

$$
\begin{aligned}
& \Lambda(V)=\frac{T(V)}{I}(1+v) \cdot(w \otimes w \otimes d) \\
& \in I
\end{aligned}
$$

where I is the subspace sparred by vectors of the form $\begin{gathered}\text { a stammering } \\ \text { tensor" }\end{gathered} \longrightarrow \quad V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}, k \in \mathbb{N}, V_{i}=V_{i+1}$ for some $1 \leq i \leq k-1$.

So we have

$$
\begin{aligned}
\Lambda(V) & =\Lambda^{0}(V) \oplus \Lambda^{1}(V) \oplus \Lambda^{2}(V) \oplus \Lambda^{3}(V) \oplus \cdots \\
& =\mathbb{R} \oplus \forall \oplus \Lambda^{2}(V) \oplus \Lambda^{3}(V) \oplus \cdots
\end{aligned}
$$

The equivalence class of $\left[V_{1} \otimes \ldots \otimes V_{u}\right]$ in $\Lambda^{n}(V)$ is written $V_{1} \wedge \ldots \wedge V_{n}$.
Note that $V_{1} \wedge V_{2}=-V_{2} \wedge V_{1}$. F why?

If $e_{i}, i=1 \ldots m$ is a basis of V, then

$$
e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}} \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m
$$

is a basis for $\Lambda^{k}(V)$.
Exercise 4. Show that for any finite-dimensional vectur spaces V and W, there is a canonical ${ }^{\text {linear }}$ isomorphism (ie. independent of a choice of basis)

$$
V^{*} \otimes W \cong \operatorname{Hom}(V, W)
$$

Exercise 5. If $A: V \rightarrow W$ is a linear map, we define its $k^{\text {th }}$ exteric power

$$
\Lambda^{u}(A): \Lambda^{u}(V) \rightarrow \Lambda^{u}(W)
$$

on wedge products by

$$
V_{1} \wedge \ldots \wedge v_{4} \longmapsto A v_{1} \wedge \cdots \wedge A v_{4}
$$

and then extend this definition to all of $\Lambda^{4}(V)$ by linearity. If $\operatorname{dim}(V)=m /$ and $A: V \rightarrow V$ is a linear map, show that

$$
\Lambda^{m}(A)=\operatorname{det}(A) \cdot i^{\Lambda^{m}(v)}
$$

This gives us a basis-free definition of the determinant!

$$
\operatorname{dim} V=n \Rightarrow \Lambda^{m+1}(V)=\{0\} \quad \widetilde{e_{1} n \cdots n e_{m}} \text { basis for } \Lambda^{m} V
$$

Let e_{1}, \cdots, e_{m} be a basis for V, and

$$
\begin{aligned}
\operatorname{det} A & =\operatorname{det}[A] \\
& =\sum_{\sigma \in S_{m}}(-1)^{\sin \sigma} A_{(\sigma(1)} \cdots A_{m \sigma(m)}
\end{aligned}
$$

$$
\bigwedge^{k} A\left(e_{1} \wedge \cdots n e_{m}\right)=\underbrace{A e_{1} \wedge \cdots \wedge A e_{m}}
$$

$$
=\left(\sum_{i,} A_{i_{1} 1} e_{i_{1}}\right) \wedge \cdots \wedge\left(\sum_{i_{m}} A_{i_{m} m} e_{i_{m}}\right)
$$

$$
=\sum_{i_{11} \cdots, i_{m}} A_{i_{1,1}} A_{i_{2} 2} \cdots A_{i_{m} m} e_{i_{1}} \wedge \cdots \wedge e_{i_{m}}
$$

$$
\vdots
$$

$$
=\sum_{\sigma \in S_{m}}(-1)^{\sin \sigma} A_{(\sigma(1)} \cdots A_{m \sigma(m)} e_{1} \wedge \cdots n e_{m}
$$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

$A e_{1} \wedge A e_{2}$

$$
\begin{aligned}
& =\left(a_{11} e_{1}+a_{21} e_{2}\right) \wedge\left(a_{12} e_{1}+a_{22} e_{2}\right) \\
& =\left[\begin{array}{l}
e_{1} \wedge e_{1}=0 \\
e_{2} \wedge e_{1}=-e_{1} \wedge e_{2}
\end{array}\right.
\end{aligned}
$$

Geometric interpretation of wedge products

$$
V \wedge W=-W \cap V
$$

$$
\begin{aligned}
V \wedge w & =V \wedge(w+t v) \\
& =V \wedge w+\underbrace{t v \wedge v}_{=0}
\end{aligned}
$$

$V \wedge W$ "oriented area element spanned by V and $W^{"}$

$$
\begin{aligned}
& \Lambda^{2} V=\left\{\begin{array}{l}
\text { oriented } \\
\text { area elements in } V\} \\
\left(\Lambda^{2} V\right)^{x}=\{\text { area functional s on } V\}
\end{array} .\left\{\begin{array}{l}
\end{array}\right) .\right.
\end{aligned}
$$

Moreover, for any finite-dimensicional vector space V, we has a canonical linear isomorphism

$$
T: \Lambda^{k}\left(V^{*}\right) \xrightarrow{\cong}\left(\Lambda^{k} V\right)^{*}
$$

defined on wedge vectors by

$$
T\left(f_{1} \wedge \cdots \wedge f_{k}\right)\left(v_{1} \wedge \cdots \wedge v_{k}\right):=\sum_{\sigma \in S_{k}} f_{\sigma\left(V_{1}\right)}\left(v_{1}\right) f_{\sigma(2)}\left(v_{2}\right) \cdots f_{\sigma(k)}\left(v_{k}\right) .
$$

For instance, suppose V is 2 -dimensional. Suppose:

$$
e_{11}, e_{2} \text { is a basis for } V
$$

Then

$$
e^{\prime}, e^{2} \text { is the dual basis for } V^{*}
$$

Also,
$e_{1} \wedge e_{2}$ is a basis for $\Lambda^{2} V$
Let's calculate $T\left(e^{\prime} \wedge e^{2}\right) \in\left(\Lambda^{2} V\right)^{*}$. Well,

$$
\begin{aligned}
T\left(e^{\prime} \wedge e^{2}\right)\left(e_{1} \wedge e_{2}\right) & =\underbrace{e^{\prime}\left(e_{1}\right)}_{=1} \underbrace{e^{2}\left(e_{2}\right)}_{=1}+\underbrace{e^{2}\left(e_{1}\right)}_{=0} \underbrace{e^{\prime}\left(e_{2}\right)}_{=0} \\
& =1
\end{aligned}
$$

We conclude that $T\left(e^{1} \wedge e^{2}\right)$ is the dual basis of $e_{1} \wedge e_{2}$ in $\left(\Lambda^{h} V\right)^{*}$?

Since

$$
V_{1} \wedge \cdots \wedge V_{u} \quad \in \bigwedge^{k} V \quad V_{1}, \cdots, V_{u} \in V
$$

represents a k-dimensional oriented area elements in V,

we should therefore think of something in $\Lambda^{k}\left(V^{*}\right) \cong \Lambda^{u}(V)^{*}$ as a measuring-stich on K-dimensional oriented volume elements in V.
1.6. Differential forms

Giver a smooth manifold M, recall we have the tangent bundle $T M \xrightarrow{\pi} M$:

And, a smooth vector field is a smooth section $X: M \longrightarrow T M$ of the tangent bundle, ie. a smooth selection of a vector

$$
x_{p} \in T_{p} M \quad \forall p \in M .
$$

ie.

$$
\operatorname{Vect}(M):=C^{\infty}(M, T M) .
$$

Now we have learnt functrial ways to construct new vector spaces from old: dual vector space, tensor products, wedge products. So we also hare the cotangent bundle $T^{*} M \longrightarrow M$, whose fiber vector spore at $p \in M$ is

$$
T_{p}^{*} M:=\left(T_{p} M\right)^{*} \equiv \operatorname{Hom}\left(T_{p} M, \mathbb{R}\right) .
$$

A smooth I-form on M is a smooth section α of $T^{\star} M$.
More generally, we have the $k^{\text {th }}$ exterior parr bute $\Lambda^{n} T^{*} M$, whose fiber vector space of $P E M$ is $\Lambda^{4}\left(\int_{p}^{*} M\right)$.

$$
V \quad \Lambda^{0} V=\mathbb{R}
$$

Definition A smooth k-form on a manifold M is a smooth section ω of $\Lambda^{n}\left(T_{p}^{*} M\right)$. We write $\Omega^{h}(M)$ for the vector space of smooth k-forms on M, ie. $J^{u}(M):=C^{\infty}\left(M, \Lambda^{u} T^{*} M\right)$.

So, a k-form $\omega \in l^{h}(M)$ consists of a smooth selection of a vector

$$
\omega_{p} \in \bigwedge^{h}\left(T_{p}^{*} M\right) \quad p \in \mathbb{N}
$$

and is hence a measuning-stich on k-dimensional oriented volume elenats in $T_{p} M$, for each $p \in M$. In particular, you can integrate $\omega \in \operatorname{ll}^{h}(M)$ over a k-dimensional sulomanifold of M. but we dort need this right now.

O-forms

$$
\Omega^{0}(M)=C^{\infty}(M, \mathbb{R})
$$

A smooth function $f: M \longrightarrow \mathbb{R}$, when expressed in a local chart (u, ϕ) of M, becomes a function $\tilde{f}\left(x_{1}, \cdots, x_{m}\right)$.

1-forms For all $p \in U$, we have the coordinate tangent vector basis

$$
\left(\partial_{x_{1}}\right)_{p}, \cdots,\left(\partial_{x_{m}}\right)_{p} \in T_{p} M
$$

So, at each $p \in M$, we have the dual basis

$$
\left(d x_{1}\right)_{p}, \cdots, \quad\left(d x_{m}\right)_{p} \ldots \text { we could also write }
$$

So, locally on U, a l-form can e writhe as

$$
\omega=\omega_{1}\left(x_{1}, \cdots, x_{m}\right) d x_{1}+\cdots+\omega_{m}\left(x_{1}, \cdots, x_{m}\right) d x_{m}
$$

k-forms Similarly, for any coordinate chart

$$
\left(d x_{i_{1}}\right)_{p} \wedge \cdots \wedge\left(d x_{i_{k}}\right)_{p} \quad 1 \leqslant i_{1}<\cdots<i_{n} \leqslant m
$$

is a basis for $\Lambda^{k} T_{p}^{*} M$, and so every $\omega \in \Omega^{k}(M)$ can be expanded locally in the coordinate chart as

$$
\omega=\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant m} \omega_{i, i_{2} \cdots i_{4}}\left(x_{1}, \cdots, x_{m}\right) d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}} .
$$

Example $M=\mathbb{R}^{3}$:
0-form $f=f(x, y, z)$
$\underline{1-\text { form }} \alpha=\alpha_{x}(x, y, z) d x+\alpha_{y}(x, y, z) d y+\alpha_{z}(x, y, z) d z$
2-form $\beta=\beta_{z}(x, y, z) d y \wedge d z+\beta_{y}(x, y, z) d z \wedge d x+\beta_{z}(x, y, z) d x \wedge d y$
3-form $\omega=\omega(x, y, z) d x \wedge d y \wedge d z$.

Pullback of forms
If

$$
\psi: N \longrightarrow N
$$

is a smooth map, then we get the pullback map

$$
\psi^{*}: \Omega^{k}(N) \longrightarrow l^{k}(M)
$$

defined via:

$$
\psi^{*}(\omega)\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\omega\left(\psi_{k} v_{1} \wedge \cdots \wedge \psi_{k} v_{u}\right)
$$

1.7. The exterior derivative

There is a linear map
coordinate -Free

$$
d: \quad J^{\circ}(M) \longrightarrow J^{\prime}(M)
$$ definition.

defined by

$$
(d f)_{p}\left(v_{p}\right):=\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t))
$$

where γ is a curve representing $v \in T_{p} M$.

Exercise 1 Check (df)p is well-defined, ie. only depends on the equivderce class of γ.

Locally, if x_{1}, \cdots, x_{m} are coordinates in a chart for M_{1}, then

$$
\begin{aligned}
& f(p)=\tilde{f}\left(x_{1}, \cdots, x_{m}\right) \text {, and } \\
& \qquad d f=\frac{\partial \tilde{f}}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial \tilde{f}}{\partial x_{m}} d x_{m}
\end{aligned}
$$

Execise 2 Cheder this.

In particular, each coordinate x_{i} is a smooth function on $U \subseteq M$:

We calculate:

$$
d\left(\text { the coordinate function } x_{i}\right)=\underbrace{d x_{i}}_{\text {the dual basis vector to } \partial_{x_{i}} \text {. }}
$$

Proof $d\left(\right.$ the coordinate function $\left.x_{i}\right)\left(\partial_{x_{j}}\right)$

$$
\begin{aligned}
& =\left.\frac{d}{d t}\right|_{t=0} x_{i}\left(\text { the path whee we only change } x_{j}\right) \\
& =\delta_{i j} .
\end{aligned}
$$

We also check that the liner map

$$
d: \Omega^{\circ}(M) \longrightarrow \Omega^{\prime}(M)
$$

Satisfies the "Leibniz rule":

$$
d(f g)=f d g+g d f
$$

Proof Locally,

$$
\begin{aligned}
d(f g) & =\sum_{i=1}^{m} \frac{\partial}{\partial x_{i}}(\tilde{f} \tilde{g}) d x_{i} \\
& =\sum_{i=1}^{m}\left(\tilde{f} \frac{\partial \tilde{g}}{\partial x_{i}}+\tilde{g} \frac{\partial \tilde{f}}{\partial x_{i}}\right) d x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\tilde{f} \sum_{i=1}^{m} \frac{\partial \tilde{g}}{\partial x_{i}} d x_{i}+\tilde{g} \sum_{i=1}^{m} \frac{\partial \tilde{f}}{\partial x_{i}} d x_{i} \\
& =\tilde{f} d g+\tilde{g} d f .
\end{aligned}
$$

IR
|f
Also, if $\psi: M \rightarrow N$ is a smooth map, and $f \in \Omega^{0}(N)$, then

$$
\psi^{*}(d f)=d\left(\psi^{*} f\right):=f \cdot \psi \text {. }
$$

Check! At $p \in M$, let $v \in T_{p} M$.

$$
\begin{aligned}
\operatorname{LKS}(v) & =d f\left(\psi_{* v}\right) \\
& =f_{*}\left(\psi_{* v}\right)
\end{aligned}
$$

Check that

$$
d f(v)=f_{\pi}(v)
$$

$$
\begin{aligned}
\operatorname{RHS}(v) & =d\left(\gamma \psi^{*} f\right)(v) \\
& =d(f \circ \psi)(v) \\
& =(f \circ \psi)_{*}(v) \\
& =f_{x}(\psi+v)
\end{aligned}
$$

(Chain role).

We can extend d to a linear map ("enteric derivative")

$$
d: \Omega^{4}(M) \longrightarrow J^{l+1}(M)
$$

as follows. Each k-form is locally a sum of forms of te form

$$
\omega=f d x_{i}, \ldots \wedge d x_{i_{4}} .
$$

We define

Exercise Check that du does not depend on the coordinate charts used.
and extend the definition to all of $S^{h}(M)$ by linearity.
Lemma $\quad d^{2}=0 . \quad\left(\right.$ ie. the composite $\left.l^{h}(M) \xrightarrow{d} l^{h+1}(M) \xrightarrow{d} l^{h+1}(M)\right)$ is $2 e 0$.

Proof On a form of the form

$$
\omega=f d x_{i}, \cdots \wedge d x_{i m}
$$

we have:

$$
\begin{aligned}
& d \omega=\sum_{j=1}^{m} \frac{\partial f}{\partial x_{j}} d x_{j} \wedge d x_{i} \wedge \ldots \wedge d x_{i m}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i<j} \underbrace{\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}-\frac{\partial f}{\partial x_{j} \partial x_{i}}\right)}_{=0} d x_{i} \wedge d x_{j} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i m}
\end{aligned}
$$

Example For $M=\mathbb{R}^{3}$, recall.

0 -form $f=f(x, y, z)$

$$
\vec{\alpha}=\left(\alpha_{x}, \alpha_{y}, \alpha_{2}\right)
$$

1-form $\alpha=\alpha_{x}(x, y, z) d x+\alpha_{y}(x, y, z) d y+\alpha_{z}(x, y, z) d z$
2-form $\quad \beta=\beta_{x}(x, y, z) d y \wedge d z+\beta_{y}(x, y, z) d z \wedge d x+\beta_{z}(x, y, z) d x \wedge d y$

$$
\longrightarrow \vec{\beta}=\left(\beta_{x}, \beta_{y}, \beta_{z}\right)
$$

3-form $\omega=\omega(x, y, z) d x \wedge d y \wedge d z$. ω

So, eg.

$$
\begin{aligned}
& \begin{aligned}
& 0 \\
& l^{d} \Omega^{\prime}
\end{aligned} \quad\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\nabla f \quad=\operatorname{gradf} \\
& f \longmapsto d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial x} d z \\
& \Omega^{\prime} \xrightarrow{d} \Omega^{2} \\
& \alpha \longmapsto d \alpha=\frac{\partial \alpha_{x}}{\partial x} d x \wedge d x+\frac{\partial \alpha_{x}}{\partial y} d y \wedge d x+\frac{\partial \alpha_{x}}{\partial r} d r \wedge d x \\
& +\frac{\partial \alpha_{y}}{\partial x} d x \wedge d y+\frac{\partial x_{y}}{\partial y} d y \wedge d y+\frac{\partial_{\alpha}}{\partial z} d z \wedge d y \\
& +\frac{\partial \alpha_{z}}{\partial x} d x \wedge d z+\frac{\partial \alpha_{z}}{\partial y} d y \wedge d z+0 \\
& =\left(\frac{\partial \alpha_{y}}{\partial x}-\frac{\partial \alpha_{x}}{\partial y}\right) d x \wedge d y+\left(\frac{\partial \alpha_{x}}{\partial z}-\frac{\partial \alpha_{z}}{\partial x}\right) d z \wedge d x
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\frac{\partial \alpha_{z}}{\partial y}-\frac{\partial \alpha_{y}}{\partial z}\right) d y \wedge d z \\
& \Omega^{2} \xrightarrow{d} l^{3} \\
& \beta=\beta_{2}(x, y z z) d y \wedge d_{z}+\beta_{y}(x, y, z) d z n d x+\beta_{z}(x, y z) d x \wedge d y \\
& \beta \longmapsto d \beta=\left(\frac{\partial \beta_{x}}{\partial x}+\frac{\partial \beta_{y}}{\partial y}+\frac{\partial \beta_{z}}{\partial z}\right) d x \wedge d y \wedge d z
\end{aligned}
$$

On \mathbb{R}^{3}, we can identify:

$$
\begin{gathered}
\Omega^{0}\left(\mathbb{R}^{3}\right) \\
d d \\
\Omega^{\prime}\left(\mathbb{R}^{3}\right) \\
\downarrow d \\
\Omega^{2}\left(\mathbb{R}^{3}\right) \\
d d \\
\Omega^{3}\left(\mathbb{R}^{2}\right)
\end{gathered}
$$

$$
\left.\begin{array}{c}
C^{\infty}\left(\mathbb{R}^{3}\right) \\
\downarrow \text { grad } \\
\operatorname{Vect}\left(\mathbb{R}^{3}\right) \\
\downarrow \operatorname{curl} \mid \\
\operatorname{Vect}\left(\mathbb{R}^{3}\right) \\
\downarrow \operatorname{div} \\
C^{\infty}\left(\mathbb{R}^{3}\right)
\end{array}\right]\left(\begin{array}{l}
\nabla \cdot(\nabla \times \overrightarrow{0}) \\
=\overrightarrow{0}) \\
\nabla \cdot(\overrightarrow{0})
\end{array}\right.
$$

Example For $M=S^{2}$, consider $f(x)=x$

Since $x=\sin \theta \cos \phi$, in (x, y) coadianot system,

$$
\begin{aligned}
d x= & 1 d x+0 \cdot d y \\
= & 1 \cdot\left(\frac{\partial x}{\partial \theta} d \theta+\frac{\partial x}{\partial \phi} d \phi\right) \\
& +0 \cdot\left(\frac{\partial y}{\partial \theta} d \theta+\frac{\partial y}{\partial \phi} d \phi\right) \\
= & \cos \theta \cos \phi d \theta-\sin \theta \sin \phi d \phi .
\end{aligned}
$$

2.1. Complex Manifolds and Udomorphic Maps
holomorphic
Definition A_{n} m-dimensional smooth atlas $\left(U_{i}, \phi_{i}\right)_{i \in I}$ on a topological space M is an open cor $\left(U_{i}\right)$ of M together with local chats (homeomorphisms)

$$
\phi_{i}: U_{i} \xrightarrow{\cong} \text { open subset of URNT } \mathbb{C}^{m}
$$

 derivatives exist
satisfying, for all $U_{i} \cap U_{j} \neq \phi_{1}$ and are holomorphic

$$
\begin{array}{r}
\phi_{j} \cdot \phi_{i}^{-1} \text { is a smooth map (between open } \\
\\
\\
\text { subsets of } \left.\mathbb{C}^{m}\right)
\end{array}
$$

holomorphic
A^{n} atlas on M allows us to say when a function $f: M \rightarrow \mathbb{R}$ is sancoth: namely, we demand, for all charts $\left(u_{i}, \phi_{i}\right)$, that $f \circ \phi_{i}^{-1}$ is a smooth ouphe map (from on open subset of \mathbb{R}^{B} to \mathbb{N}, where we know what that means).

Definition Two smooth atlases $\left(U_{i}, \phi_{i}\right)_{i \in I}$ and $\left(V_{u}, \psi_{u}\right)_{j \in J}$ on M are equivalent if they agree on which functions $f: M \longrightarrow i{ }^{1}$ are smoothy. not.
(Hausdorff, and countable)
Definition An m-dimensional smooth manifold is a ${ }^{n}$ topological space M equipped with an equivalence class of an m-dimensional holumardhif seth at as.

Defintion A map $h: M \longrightarrow N$ between smoodh manifolds $\left(M_{1}\left(U_{i}, \phi_{i}\right)\right)$ and $\left(N,\left(V_{j}, \psi_{j}\right)\right)$ is smosto if, for all i,j,
$\psi_{j} \circ h \cdot \phi_{i}^{-1}$: open subset of $\mathbb{R}_{\mathbb{R}^{n}}^{\mathbb{C}^{n}} \longrightarrow$ pen sibrect of \mathbb{R}^{N}
is 5 mooth.

holomurphic
A smootn map $h: M \rightarrow N$ is called a diffeomophism if h^{-1} exists and is sinooth. hol.
\wedge holomol phic

Example $1 S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ is a smecoth manifold.
Hol. atlos: $U_{N}=S^{2} \backslash\{(0,0,1)\}$
$\phi_{N}: U_{N} \xrightarrow{\approx} \mathbb{C}$ slereographic projection from noth pole

$$
\begin{aligned}
\text { TN }(x, y, z) & \longmapsto \frac{1}{1-2}\left(x-y_{i}\right) \\
\frac{1}{1+x^{2}+y^{2}}\left(2 x, 2 y, x^{2}+y^{2}-1\right) & \longleftrightarrow x+y_{i}^{0}
\end{aligned}
$$

- $U_{5}=S^{2} \backslash\{0,0,-1\}$ $\phi_{s}: U_{s} \cong \mathbb{R}^{2}$

$$
\begin{aligned}
& (x, y, 2) \longmapsto \frac{x+i y}{1+2} \\
& ? \quad(x, y)
\end{aligned}
$$

Example $2 \quad \mathbb{C} \mathbb{P}^{1}=\left\{1-\right.$ dim subspaces of $\left.\mathbb{C}^{2}\right\} . \quad(2, \omega) \sim\left(\lambda_{2}, \lambda_{w}\right)$

$$
\begin{array}{rr}
=\frac{\mathbb{C}^{2} \backslash\{(0,0)\}}{\sim} \quad \text { where } & {[z: w]=\left[\lambda_{2}: \lambda_{w}\right]} \\
& \text { for all } \lambda \in \mathbb{C}^{*} .
\end{array}
$$

Con put charts on it as follows:

$$
\begin{gathered}
U_{0}=\left\{\left[z_{0}: z_{1}\right] \in \mathbb{C} \mathbb{P}^{\prime}: z_{0} \neq 0\right\} \\
\phi_{0}: U_{0} \longrightarrow \mathbb{C} \\
{\left[z_{0}: z_{1}\right] \longmapsto \frac{z_{1}}{z_{0}}} \\
{[1: z] \longleftrightarrow z} \\
U_{1}=\left\{\left.\left[z_{0}: z_{1}\right] \in \mathbb{C}\right|^{1}: z_{1} \neq 0\right\} \\
\phi_{1}: U_{1} \longrightarrow \mathbb{C} \\
{\left[z_{0}: z_{1}\right] \longmapsto \frac{z_{0}}{z_{1}}} \\
{\left[z_{1}\right]}
\end{gathered}>
$$

Transition functions:

$$
2 \stackrel{\phi_{0}^{-1}}{\longrightarrow}[1: 2] \stackrel{\phi_{1}}{\longmapsto} \frac{1}{2}
$$

which is holomorphic on $\phi_{0}\left(U_{0} \cap U_{1}\right)=\mathbb{C}^{*}$.

Indeed, we have a hdomorphic diffeomorphism

Exercise 2 Check this.

More generally,

$$
\mathbb{C} \mathbb{P}^{n}=\left\{1 \text {-dimensional subspaces of } \mathbb{C}^{n+1}\right\}
$$

can be equipped with a holomorphic atlas in a similar way Exercise 3. Supply the details.

A Riemann surface is a 1-dimensional convex manifold.

Example 3

- Every per set in \mathbb{C} is a complex manifold, eg.
$\mathbb{C}, \quad D=\{z:|z|<1\}$

Recall the Riemann mapping theorem:
Every connected open subset $U \leq \mathbb{C}$ which is not all of \mathbb{C} is holomorphically in bijectine correspondence with D.

But, $\mathbb{C} \neq D$, because

$$
\underset{\substack{3-\operatorname{dim} \\ \text { Liegrap }}}{\rightarrow} \rightarrow \text { fut }(D)=\left\{z \longmapsto \frac{a z+b}{\bar{b} z+\bar{a}} \quad,|a|^{2}-|b|^{2}=1\right\}
$$

$$
\begin{aligned}
& \text { while } \\
& \begin{array}{l}
\text { 4 -dim } \\
\text { Liegrap }
\end{array} \rightarrow A_{u t}(\mathbb{C})=\left\{z \longmapsto a z+b, a \in \mathbb{C}^{*}, b \in \mathbb{C}\right\}
\end{aligned}
$$

while

Example 4 Suppose you have a topological surface obtained by gluing together the edges of a collection of Euclidean triangles together in pairs: eg:

"
I)

Then you can place a holomorphic atlas on it as follows. Let x be a point on the surface.

- If x is not a vertex or on an edge, choose a dish U around x lying orticley in the triangle, and use the "ideritiy" chart:

- If x lies on an edge e (but is not a vertex), then thor are two triangles having edge e. The chart is the dish obtained as two half-disks joined together:

- If x is a vertex, then consider the dish U made up of sectors composed out of all the triangles incident on x : They span an angle α (which might not equal 2π). Map

so as to map $U 1-1$ onto a disk in \mathbb{C} :

Exercise 3 Cheder that this is a holomorphic atlas!

Example 5 (Algebraic curves) Suppose we are given a polynomial $p(z, w)$.
Set

$$
X=\left\{(2, w) \in \mathbb{C}^{2}: p(2, w)=0\right\}
$$

Suppose that for all $(z, w) \in X, \nabla_{p}=\left(p_{2}, p_{w}\right) \neq(0,0)$. Note what this condition means: if $p_{w} \neq 0$ at $\left(z_{0}, w_{0}\right)$, then near $\left(z_{0}, w_{0}\right)$ we can express $W(2)$ in a holomorphic way (by the holomorphic version of the Implicit Function Theorem earlier).

So, we can parametrize the points of X using Z as a local coordinate:

$$
z \longmapsto(z, w(z))
$$

Similarly, if $p_{w} \neq 0$ ak $\left(z_{0}, w_{0}\right)$, then we can locally expess $z(w)$, and get a local parametrization

$$
w \longmapsto(z(w), w)
$$

In this way we get a holomorphic atlas for X. We call X a smooth algebraic curve.

For example,

$$
p(2, w)=w-z^{2} \quad X=\left\{(2, w): w-2^{2}=0\right\}
$$

Picture of X in \mathbb{R}^{2} :

(More generally, in higher dimensions, a space of the form

$$
X=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}: \quad p_{i}\left(z_{1}, \cdots, z_{n}\right)=0\right\}
$$

for some polynomial p_{i} whee rank $\left(\frac{\partial p_{i}}{\partial z_{j}}\right)$ is maximal on X has a natural holomorphic atlas... we call it a smooth algebraic variety).
The way to understand this is that the Rienam surface X comes with a projection mop onto each coordinate, eg.

And so we think of X as a rigorous, holomorphic construct which expresses z as a multivalued function of W :

In our example, this makes rigorous the function

This $X \subseteq \mathbb{C}^{2}$ is not a compact Riemann surface. The compact version $\bar{X} \subseteq \mathbb{C} \mathbb{P}^{2}$ is dotained by homogenizing $p(z, w)$ to a homognows polynomial $P(t, z, w)$ by adding pauses of t, eg

$$
\begin{aligned}
p(z, w)=z^{5} & -2 z^{2} w-z^{3} w^{2}+w \\
& \leadsto P(t z, w)=z^{5}-2 t^{2} z^{2} w-z^{3} w^{2}+t^{4} w
\end{aligned}
$$

and then setting

$$
\bar{X}:=\left\{(t: z: w) \in \mathbb{C} \mathbb{P}^{2}: P(t, z, w)=0\right\}
$$

will give us a compact Rienconn surface $[$ providing $\nabla P \neq 0$ on \bar{X}], a smooth projective algebraic curve.

Note that

$$
\bar{X}=X \cup \underbrace{\left\{(0: 2: w) \in \mathbb{C} \mathbb{P}^{2}: P(0,2, w)=0\right\}}_{\text {finite number of points "at infinity" }}
$$

In our example, the points at infinity are given by:

$$
(0: 2: w): z^{5}-z^{3} w^{2}=0
$$

So we get three points at infinity:

$$
\left(\begin{array}{l}
\left(0: 1: w^{ \pm 1}\right) \\
(0: 0: 1)
\end{array}: 1-w^{2}=0 \quad \Rightarrow w= \pm 1\right.
$$

Example 6 Quotient spaces If M is a complex manifold, and G is a group which acts properly discontinuously on M, then M / G is a Riemann surfue (by inheriting the chats from M).
ie. every $p \in M$ has a neighborhood U such that $g \cdot U \cap U$ is empty $\Leftrightarrow g=e$

eg. $\Lambda \subseteq \mathbb{C}$ a lattice (a dissele subgrap of \mathbb{C}). Then

$$
X=\mathbb{C} / \Lambda
$$

is a Riemann surface.
2.2. Almost Complex Structures

At every pe l \mathbb{R}^{2}, we have the "rotate canterclodewise by $90^{\circ "}$
map

$$
J_{p}: T_{p} \mathbb{R}^{2} \longrightarrow T_{p} \mathbb{R}^{2}
$$

Lemma A smooth map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is holomorphic (when thought of as a mop $f: \mathbb{C} \rightarrow \mathbb{C}$) if and only if

$$
f_{*}\left(J_{p}\right)=J_{f(\varphi)}\left(f_{*} v\right)
$$

for all $p \in \mathbb{R}^{2}$.

Proof It is sufficient to chede this on the basis

$$
\partial_{x}, \partial_{y}
$$

for $T_{p} \mathbb{R}^{2}$. Note that

$$
J\left(\partial_{x}\right)=\partial_{y}, \quad J\left(\partial_{y}\right)=-\partial_{x}
$$

Write

$$
f(x, y)=(u(x, y), v(x, y))
$$

Then:

$$
\begin{aligned}
f_{x}\left(J \partial_{x}\right) & =f_{x}\left(\partial_{y}\right) \\
& =\frac{\partial u}{\partial y} \partial_{x}+\frac{\partial v}{\partial y} \partial_{y}
\end{aligned}
$$

while

$$
\begin{aligned}
J\left(f_{x} \partial_{x}\right) & =J\left(\frac{\partial u}{\partial x} \partial_{x}+\frac{\partial v}{\partial x} \partial_{y}\right) \\
& =\frac{\partial u}{\partial x} \partial_{y}-\frac{\partial v}{\partial x} \partial_{x}
\end{aligned}
$$

So

$$
f_{t}\left(J \partial_{x}\right) \stackrel{(1)}{=} J\left(f_{+} \partial_{c}\right) \Leftrightarrow \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \text { and } \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}
$$

Similarly,

$$
f_{*}\left(J \partial_{y}\right) \stackrel{(\partial)}{\stackrel{y^{\prime}}{=}} J\left(f_{*} \partial_{y}\right)
$$

yields the exact same set of equations:

$$
\begin{aligned}
f_{*}\left(J \partial_{y}\right) & =f_{*}\left(-\partial_{x}\right) \\
& =-f_{*}\left(\partial_{x}\right) \\
& =-\left[\frac{\partial u}{\partial x} \partial_{x}+\frac{\partial v}{\partial x} \partial_{y}\right] \\
J\left(f_{*} \partial_{y}\right) & =J\left[\frac{\partial v}{\partial y} \partial_{x}+\frac{\partial v}{\partial y} \partial_{y}\right] \\
& =\frac{\partial u}{\partial y} \partial_{y}-\frac{\partial v}{\partial y} \partial_{x} \\
& \therefore \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

These are precisely the Cauchy-Rienom equations, which are the definition q

$$
f(x, y)=u(x, y)+i v(x, y)
$$

to be holomorphic!

Definition A_{n} almost complex stucture on a smooth real manifold M is a smooth section J of $\underset{\cong}{\text { End (TM) } T^{m} M \text { aTM }}$ satisfying $J_{p}^{2}=-i d_{p}$ on each tangent space. An almost complex manifold is a manifold equipled with an almost complex stuchre.

Example. \mathbb{R}^{2}, where $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ on each tangent space, ie.

$$
J\left(\partial_{x}\right)=\partial_{y}, \quad J\left(\partial_{y}\right)=-\partial_{x}
$$

- $\mathbb{R}^{2 n}$, where:

$$
J\left(\partial_{x_{i}}\right)=\partial_{y_{i}} \quad J\left(\partial_{y_{i}}\right)=-\partial_{x_{i}}
$$

- Any complex manifold M has an duos complex stuvciure. Let $p \in M$. Choose a holomorphic chart $\left(z_{1}, \cdots, z_{m}\right)$ around p. Then

$$
\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{m}, y_{n}\right)
$$

are real coordinates wound p, and we set

$$
J\left(\partial_{x_{i}}\right)=\partial_{y_{i}} \quad, \quad J\left(\partial_{y_{i}}\right) \Rightarrow \partial_{x_{i}}
$$

Exercise 1 Cinede that this definition does not depend on the holomorphic chart used.

The converse is not the in general! Not every almost complex manifold can be equipped with a holomorphic atlas.

But: much of the theory of complex manifolds only needs the underlying almost complex structure, and not the holomorphic charts. For instance, the definition of a holomorphic map!

Lemma A smooth map $f: M \longrightarrow N$ between complex manifolds is holomorphic if and only if f_{*} preserves the almost complex structure, ie.

$$
f_{*} J_{p}=J_{f(P)} f_{k} \quad \forall p \in M
$$

Exercise 2 Prove this!

Example Suppose $M \subseteq \mathbb{R}^{3}$ is an oriented smooth surface embedded in \mathbb{R}^{3}. Then M inherits on almost-complex structure J, by rotating counterclockwise by 90° in each tangent space:

What holomorphic chart is compatible with J? Well, we have the Gauss map

$$
N: M \longrightarrow S^{2}
$$

$p \longmapsto$ outward unit normal vector of p

It tuns out that N is holomorphic (as a map between almost complex manifolds) if (but not only if) M is a minimal surface, ie. the eigenvalues of the shape operator

$$
S_{p}: T_{p} M \longrightarrow T_{p} M
$$

$v \longmapsto$ derivative of N in te direction of V
are $\pm K$ (ie. the principal curvatures ore opposite).
2.3. Some almost-complex linear algebra

Every real vector space V has a complexification

$$
V_{\mathbb{C}}:=\left\{\text { formal combinations } v_{1}+i v_{2}, \quad v_{1}, v_{2} \in V\right\}
$$

which is a complex vector space.
Note that we can also write

$$
V_{c}=V_{\mathbb{R}}^{\otimes} \mathbb{C}
$$

via the identification, for $v \in V$,

$$
\begin{aligned}
& V \longmapsto V \otimes 1 \\
& i v \longmapsto V \otimes i
\end{aligned}
$$

If

$$
e_{1}, \cdots, e_{m}
$$

is a basis for the real vector space V

$$
e_{1}, \cdots, e_{m}
$$

is a basis for the complex vector space V_{C}
So: V is an m-dimensional real vector space
$V_{\mathbb{C}}$ is an m-dimensional complex vector space
$V_{\mathbb{C}}$ is a $2 m$-dimensional real vector space

Morewer, any lines map

$$
A: V \longrightarrow W
$$

between real vector spaces extends to a complex-linear map

$$
\begin{aligned}
A_{\mathbb{C}}: V_{c} & \longrightarrow W_{\mathbb{C}} \\
V_{1}+i v_{2} & \longmapsto A v_{1}+i A v_{2}
\end{aligned}
$$

Excise 1 Cheder that A_{c} is a complex-lines map.

Suppose we have a real finite-dinersinal vector space and a linear map

$$
J: V \longrightarrow V, \quad J^{2}=-i d
$$

Lemma We can find a basis for V of the form
where $\quad J e_{i}=f_{i}, J f_{i}=-e_{i}$.

Exercise 2 : Prove this!
In particular, this means the dimension of V most be even.

Now, $J^{2}=-i d \Rightarrow$ eigenvalues of J are $\pm i$. So, its eigenvectors doit live in V, but rather in V_{c}. In other words, we extend J to a complex-linecs map

$$
\begin{aligned}
J_{\mathbb{C}}: & V_{\mathbb{C}} \\
& \longrightarrow V_{\mathbb{C}} \\
V_{1}+i v_{2} & \longmapsto J v_{1}+i J v_{2}
\end{aligned}
$$

and then we can decompose $V_{\mathbb{C}}$ into the eigenspaces of $J_{\mathbb{C}}$. Let's calculorie these.

$$
\begin{array}{ll}
& J\left(v_{1}+i v_{2}\right)=i\left(v_{1}+i v_{2}\right) \\
\Leftrightarrow & J v_{1}+i J v_{2}=-v_{2}+i v_{1} \\
\Leftrightarrow & v_{2}=-J v_{1}
\end{array}
$$

So, $V^{1,0}:=\operatorname{Eig}_{\lambda=i}=\left\{V-i J_{v}: v \in V\right\} \leq V_{\mathbb{c}}$ and $V^{0,1}:=E_{i g_{\lambda=-i}}=\left\{v+i J_{v}: v \in V\right\} \leq V_{c}$ and we have decomposed:

$$
\begin{array}{lll}
V & e_{1}, f_{1}, \cdots, e_{n}, f_{n} & J e_{i}=f_{i} \\
V_{c} e_{1}, f_{1}, \cdots, e_{n}, f_{n} & J f_{i}=-e_{i}
\end{array}
$$

$$
\begin{aligned}
V_{\mathbb{C}} & =V^{1,0} \oplus V^{0,1} \\
& =\underbrace{\left\{v-i J_{v}: v \in V\right\}_{i=1}}_{\text {basis } a_{i}:=e_{i}-i f_{i}} \oplus \underbrace{\left\{v+i J_{v}: v \in V\right\}_{i}=1 \ldots m}_{\text {basis } \bar{a}_{i}:=e_{i}+i f_{i}}
\end{aligned}
$$

Note that we have on ontilined bijection:

$$
\begin{aligned}
& V^{1,0} \longrightarrow V^{0,1} \\
& W \longmapsto \bar{W}
\end{aligned}
$$

Oh, so:

- Giver a ceal2n-dimensional vector space V, we have its complexification $V_{\mathbb{C}}$, which is a 2 n-dimensinal complex vector space.
- Given a real 2n-dimensional vector space V and a liner map

$$
J: V \longrightarrow V, \quad J^{2}=-i d
$$

we can decompose V_{a} into the $\pm i$ eigenspaces of J_{c}

$$
V_{\mathbb{C}}=V^{1,0} \oplus V^{0,1}
$$

- But given (V, J), we can also regard the $2 n$-dimensional real vects space V as an n-dimensional complex vector space, by defining scalar multiplication by complex numbers via

$$
i \cdot v \quad:=J_{V}
$$

Keep this in mind!

$$
\begin{aligned}
& 1: 04: 40-1: 12: 00 \\
& 2: 00: 32
\end{aligned}
$$

2.4. Decomposition of forms

Given an almost-complex manifold (M, J), we can decompose the complexification of each tangent space into the $\pm i$ eigenspoces of J_{a} :

$$
T_{p} M \otimes \mathbb{C}=T_{p}^{1,0} M
$$

(B) $T_{p}^{0,1} M$

So, the complexified tangent bundle naturally splits as

$$
T M \otimes \mathbb{C}=T^{1,0} M \oplus T^{0,1} M
$$

$$
\begin{aligned}
& V_{\sigma}=V^{100} \oplus V^{0.1} \\
& V_{c}^{*}=H_{o m}\left(V_{c}, \mathbb{C}\right) \\
& =\left(V_{a}^{*}\right)^{1,0} \oplus\left(V_{c}^{+}\right)^{0,1} \\
& =\left\{f: V_{c} \rightarrow \mathbb{C}: f(V)=0 \text { for } V \in V^{0,1}\right\} \\
& \Lambda^{k} V_{c}^{*}=\underset{\substack{a, b \\
a, b=4}}{\oplus} \frac{\Lambda^{a, 0} V^{*} \otimes \Lambda^{0, b} V^{*}}{\Lambda^{a, b} V^{*}} \\
& V=A \oplus B \\
& \Lambda^{n} V=\underset{a+b=4}{\oplus} \Lambda^{a} A \otimes\left(\Lambda^{b} B\right.
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{T}_{p} M J_{p}, J_{p}^{2}=-i d \\
& T_{p}^{*} M \otimes \mathbb{C}=\left(T_{p}^{*} M\right)^{1,0} \oplus\left(T_{p}^{*} M\right)^{0,1} \\
& \Lambda^{4}\left(T_{p}^{*} M \otimes \mathbb{C}\right)={\underset{a}{a, b}=4} \Lambda^{0,6}\left(T_{p}^{*} M\right)
\end{aligned}
$$

\therefore Holds on tangent bundle, and here on sections

$$
\Omega^{k}(M) \otimes \mathbb{C}=\bigoplus_{a b=4} \Omega^{a, b}(M)
$$

Locally, in a chart:

$\partial_{x_{1}}, \partial_{y_{1}}, \cdots, \partial_{x_{m}}, \partial_{y_{m}} \quad$ basis for $T_{p} M$

$$
\begin{aligned}
J \partial_{x_{i}} & =\partial_{y_{i}}, J \partial_{y_{i}}=-\partial_{x_{i}} \\
\partial_{z_{i}} & :=\frac{1}{2}\left(\partial_{x_{i}}-i \partial_{y_{i}}\right) \in T_{p}^{1,0} M \subseteq T_{p} M \otimes \mathbb{C} \\
\partial_{\bar{z}_{i}} & :=\frac{1}{2}\left(\partial_{x_{i}}+i \partial_{y_{i}}\right) \in T_{p}^{0,1} M \subseteq T_{p} M \otimes \mathbb{C} \\
J \partial_{z_{i}} & =i \partial_{z_{i}} \quad, \quad J \partial_{\bar{z}_{i}}=-i \partial_{z_{i}}
\end{aligned}
$$

Basis for $T_{p} M \otimes \mathbb{C}=\partial_{z_{1}}, \ldots, \partial_{z_{m}}, \partial_{z_{1}}, \cdots, \partial_{z_{m}}$
\therefore Have a dual basis for $T_{p}^{*} M \otimes \mathbb{C}=\underbrace{d z_{1}, \cdots, d z_{m}}_{\text {basis fr }\left(T_{p}^{*} M\right)^{1,0}}, \underbrace{d \bar{z}_{1}, \cdots, d \bar{z}_{m}}_{\text {basis for }\left(T_{p}^{+} M\right)^{0,1}}$
Notice:

$$
\begin{array}{lc}
d z_{i}=d x_{i}+i d y_{i} & \sin \varphi\left(d x_{i}+i d y_{i}\right)\left(\frac{1}{2}\left(\partial x_{i}-i \partial_{y_{i}}\right)\right) \\
d \bar{z}_{i}=d x_{i}-i d y_{i} & =1 / 2(1+1)=1 .
\end{array}
$$

$$
\therefore \text { Basis fo } \Lambda^{2}\left(T_{p}^{*} M \otimes \mathbb{C}\right)=\underbrace{\Lambda^{2,0}\left(T_{p}^{*} M\right)}_{d z_{i} \wedge d z_{j}} \oplus \underbrace{\Lambda^{1,}\left(T_{p}^{*} M\right)}_{d z_{i} d d \bar{z}_{j}} \oplus \underbrace{\Lambda_{0}^{0,1}\left(T_{p}^{*} M\right)}_{d \bar{z}_{i} \wedge d \bar{z}_{j}}
$$

eg. M is 4 real-dim (2 complex dim).

$$
\begin{aligned}
& \left(T_{p}^{*} M \otimes \mathbb{C}\right)=\underbrace{d z_{1}, d z_{2}}_{\text {basis }} \underbrace{\left(T_{p}^{*} M\right)^{1,0}}_{d \bar{z}_{1}, d \bar{z}_{2}} \text { (1) } \underbrace{\left.\left(T_{p}^{*} M\right)^{0,1}\right)} \\
& 6 \\
& d z_{i}:=d x_{i}+i d y_{i} \\
& \underbrace{\Lambda^{2}\left(T_{p}^{*} M \otimes \mathbb{C}\right)}_{\text {basis }}=\underbrace{\bigwedge^{2,0}}_{d z_{1} \wedge d z_{2}} \\
& \text { (7) } \underbrace{\Lambda^{1,1}}_{d z_{1} n d \bar{z}_{1}} \text { (1) } \underbrace{\Lambda^{0,2}}_{d \bar{z}_{1} \wedge d \bar{z}_{2}} \\
& d z_{1} \wedge d z_{2} \\
& d z_{2} \wedge d z_{1} \\
& d z_{2} \wedge d \bar{z}_{2} \\
& \Lambda^{3}\left(T_{p}^{p} N \otimes \mathbb{C}\right)=\underbrace{\Lambda^{3,0}}_{0} \\
& \text { (1) } \underbrace{\Lambda^{2,1}}_{d z_{1} \wedge d z_{2} \wedge d \bar{z}_{1}} \text { (i) } \underbrace{\Lambda^{1, z_{2}}}_{d z_{1} \wedge d \bar{z}_{1} \wedge d z_{2}} \text { (t) } \\
& d z_{1} \wedge d z_{2} \wedge d \bar{z}_{2} \quad d z_{2} \wedge d \bar{z}_{1} \wedge d \bar{z}_{2} \\
& 22 \\
& \Lambda^{4}\left(T_{p}^{*} M \otimes \mathbb{C}\right)=\underbrace{4,0}_{0} \\
& \text { (7) } \underbrace{\Lambda^{3,1}}_{0} \\
& \text { (i) } \underbrace{\Lambda_{0}^{2,2}}_{d z_{1} \wedge d z_{2} \wedge d \bar{z}_{1} \wedge d \bar{z}_{2}} \oplus \underbrace{\Lambda_{0}^{1,3}}_{0} \oplus \underbrace{0,4}
\end{aligned}
$$

eg. a 3-form on M lodes locally like

$$
\begin{aligned}
& \omega= f_{1} d z_{1} \wedge d z_{2} \wedge d \bar{z}_{1}+f_{2} d z_{2} \wedge d z_{2} \wedge d \bar{z}_{2} \\
&+f_{3} d z_{1} \wedge d \bar{z}_{1} \wedge d \bar{z}_{2}+ \\
&+f_{4} d z_{2} \wedge d \bar{z}_{1} \wedge d \bar{z}_{2} \\
& f_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=f\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)
\end{aligned}
$$

2.5. Almost-complex vs Complex manifolds

When can we upgrade an almost conplex-manifold (M, J) to a convex manifold?

almost-conplex manifold (M, J)
(infinitesimal structure... lives on tangent spaces)

complex manifold = hdomorphic atlas (local stucive ... lives an open sets)

Related question:
complex-volued
We've seen that the \wedge-forms on every almost-complex manifold (M, J) decompose as

$$
J^{k}(M, \mathbb{C})=\bigoplus_{a+b=b} J^{a, b}(M)
$$

Dues the exterior derivative map

$$
d: J^{h}(M, \mathbb{C}) \longrightarrow J^{h+1}(M, \mathbb{C})
$$

respect this decomposition?

To ansur this, we need to know some material daunt vests fields I slipped earlier.

Recall that for us, a vectr field is a smooth selection

$$
X_{p} \in T_{p} M
$$

of a vector from the tangent space at each $p \in M$. And that $v \in T_{p} M$ is defined as an equivalence class of curves going thanh p :

In porticules, every vests field X gives us a linear operate $\left(\begin{array}{c}\text { I'm also calling } \\ \text { it } X \text { for } \\ \text { converiere }\end{array}\right) ~ X: C^{\infty}(M) \longrightarrow C^{\infty}(M)$
defined by

$$
X(f)(\rho):=\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t)) \quad[\gamma]=X_{p}
$$

These linear maps sarify the Leibniz rule:

$$
X(f g)=X(f) g+f X(g)
$$

This gives us an alternative, operator theoretic, way to define vector fields!
Lemma A smooth vector field on M is the save thing as a linear operator

$$
X: C^{\infty}(m) \longrightarrow C^{\infty}(m)
$$

which satisties the Leibniz rule.

Exercise I Fill in the details of the proof! C.f. Looijega Prop 2.1
This operator-theoretic viewpoint is very used for Lie brackets:
Definition The Lie bradet of two smooth vector fields X and Y on a smooth manifold M is

$$
[x, y](f):=x y(f)-Y x(f)
$$

Exercise 2 Show that $[x, y]$ is a vector field! Hint: use the sector theoretic description

The Lie bradet $[X, Y]_{p}$ measures the change in Y as we mac along the integral curves of X (but we cont need this right now!)

The Lie braduet of vector fields also gives us a new, coordinate way to define the exterior derivative of differential forms! Recall that currently our formula is:

$$
d:=\sum_{j=1}^{M} \frac{\partial}{\partial x_{j}}(\cdots) d x_{j} \wedge^{" n}
$$

That is, if $\omega \in l^{k}(M)$, to comple daw we choose a coordinde chart $\left(x_{1}, \cdots, x_{m}\right)$ locally, so that

$$
\omega=\sum_{i \leqslant i_{1}<\cdots i_{i n} \leqslant m} w_{i_{1}, \ldots i_{n}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{4}}
$$

and then we set

$$
d \omega=\sum_{i \leqslant i_{1}<\cdots<i_{u} \leqslant m} \sum_{j=1}^{m} \frac{\partial \omega_{i_{1}, \ldots i_{\mu}} d x_{j}}{} d x_{j} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{4}}
$$

Coordinole-free formula for exterior derivative $d: S^{k}(M) \longrightarrow \int^{k+1}(M)$

$$
\begin{aligned}
d \omega\left(X_{0}, \cdots X_{n}\right) & =\sum_{i}(-1)^{i} X_{i}\left(\omega\left(X_{0}, \cdots, \hat{X}_{i}, \cdots, X_{n}\right)\right) \\
& +\sum_{i<j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \cdots, \hat{X}_{i}, \cdots, \hat{X}_{j}, \ldots, X_{n}\right)
\end{aligned}
$$

Exercise 3 Check that this formula at least agrees with our previous formula, in a coordinate chart.

We acre now ready to give the answer to our first question dooct when an almost-complex manifold can be upgraded to a complex manifold!

Newlander-Niremberg Theorem An almost-conplex manifold (M, J) can be upgraded to a complex manifold (i.e. equipped with a compatible holomorphic atlas) if and only if J is integrable in the sense that:

$$
\forall \quad X, Y \in C^{\infty}\left(M, T^{1,0} M\right), \quad[X, Y] \in C^{\infty}\left(M, T^{1,0} M\right)
$$

We can also give the ansurs to aus second question bout how the exterior derivative interacts with the decomposition of $\Omega^{4}(M)$:

Proposition Let (M, J) be an almost-complex manifold. The following are equivalent:

1. J is integrable
2. $d\left(S^{1,0}(M)\right) \subseteq \Omega^{2,0}(M) \oplus \Omega^{1,1}(M)$

$$
3 d\left(J^{p, q}(M)\right) \subseteq \int^{p+1, q}(M) \oplus J^{p, q+1}(M)
$$

for all p, q.
Proof (1) $\Leftrightarrow(2)$ Let $\omega \in J^{1,0}(M), \quad x, y \in C^{\infty}\left(M, T^{0,1} M\right)$
Then

$$
\begin{aligned}
& d \omega(x, y)=x(\underbrace{\omega(y)}_{=0})-Y(\underbrace{\omega(x)}_{=0})-\omega([x, y]) \\
&=-\omega([x, y]) \\
& \therefore \quad d \omega(x, y)=0 \Leftrightarrow[x, y]^{1,0} \in \text { jer } \omega \\
& \therefore \therefore J^{1,0} \subseteq \Omega^{2,0} \oplus J^{1,1} \oplus \sum^{2} x^{2} \\
& \Leftrightarrow \text { for all } x, y \in\left(T^{\infty}\left(M, T^{0,1} M\right)\right. \\
& {[x, y]^{1,0}=0 }
\end{aligned}
$$

$$
\text { i.e. }[X, Y] \in C^{\infty}\left(M, T^{0,1} M\right)
$$

$(2) \Leftrightarrow$ (3) Follows from Leibniz formula for d on le-forms Execise 4. Chedr this!

$$
\begin{aligned}
& w \in J^{n}(M), \eta \in \Omega^{\ell}(M) \\
& d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
\end{aligned}
$$

As a corollary, we see that every 2 -dimensional dmost-complex manifold (M, J) is integrable... since we mus have

$$
d \Omega^{1,0}(M) \subseteq \underbrace{\Omega^{2,0}(M)}_{=0} \oplus \Omega^{1,1}(M) \subseteq \underbrace{\int^{0,2}(M)}_{=0}
$$

as $J^{2,0}(M)=J^{0,2}(M)=0$!
In particular, every surface embedded in \mathbb{R}^{3} has a canonical complex Structure! See example from Section 2.2.

Puzzle Describe geometrically the holomorphic coordinates on such a surface (we only know how to do this for a minimal surface...)

Puzzle Consider tle "cound torus" $T_{a, b} \subseteq \mathbb{R}^{3}$, as a complenc manifol:

We know it is hodomorphically diffeomorphic to

$$
\mathbb{C} / \mathbb{Z}\langle 1, \pi\rangle
$$

for some $\pi \in \mathbb{H}$. Deternine $\tau(a, b)$.

2.6. The Dodbeault perators

So, on a complex manifold, we have local hdomadic coordinates Z_{1}, \cdots, Z_{m} and a (p, q)-form lodes like

$$
\omega=\sum_{\substack{1 \leqslant i_{i}<\cdots<i_{p} \leqslant m \\ 1 \leqslant j, j_{1}<\cdots<j_{q} \leqslant m}} \omega_{i_{1}, \cdots, i_{p}, j_{1}, \cdots, j_{q}}\left(z_{1}, \cdots, z_{m}, \bar{z}_{1}, \cdots, \bar{z}_{m}\right) d z_{i_{1}} \wedge \cdots n d z_{i_{p}} \wedge d \bar{z}_{j 1} \wedge \cdots n d \bar{z}_{j_{q}}
$$

We cen calculate dwi in these holomorphic coordinates,

$$
d=\frac{\sum_{i=1}^{m} \frac{\partial}{\partial z_{i}}(\ldots) d_{z_{i}} \wedge(\ldots)}{\partial}+\underbrace{\sum_{j}^{m} \frac{\partial}{\partial z_{i}}(\ldots) d \bar{z}_{i} \wedge(\ldots)}_{\bar{j}}
$$

In other words, since

$$
d: \iint_{\text {"del" }}^{p, q}(M) \longrightarrow \int^{p+1, q}(M) \oplus \int_{l}^{p, q+1}(M)
$$

we can write $d=\partial+\bar{\partial}$ whee:
$\uparrow \uparrow$ the Dolbeault operators

$$
\begin{aligned}
& \partial: J^{p, q}(M) \longrightarrow J^{p+1, q}(M) \\
& \bar{\partial}: J^{p, q}(M) \longrightarrow J^{p, q+1}(M)
\end{aligned}
$$

Lemma Let $f: M \longrightarrow \mathbb{C}$ be a smooth function. The following are equivodot:

1. f is holomorphic $\in C^{\infty}\left(M, T^{0,1} M\right)$
2. $\overline{\partial f}=0$
3. for every $Z \in C^{0}\left(M, T^{1,0} M\right), Z(f)=0$.

Proof $(1) \Leftrightarrow(2) . \quad \overline{ } \quad \partial=\sum_{i=1}^{m} \frac{\partial f}{\partial z_{i}} d \bar{z}_{i}$

$$
\therefore \quad \partial f=0 \Leftrightarrow \frac{\partial f}{\partial z_{i}}=0 \quad \forall i=1 \ldots m
$$

$\Leftrightarrow f$ is holomorphic

$$
\begin{aligned}
&(2) \Leftrightarrow(3): \bar{Z}(f)=d f(\bar{z}) \\
&=\overline{\partial f}(\bar{z}) \\
& \therefore \quad \overline{\partial f}=0 \Leftrightarrow \forall Z \in C^{\infty}\left(M, T^{1,0} M\right), \bar{Z}(f)=0 .
\end{aligned}
$$

Lennu $\partial^{2}=0, \partial \bar{\partial}+\bar{\partial}=0, \bar{\partial}^{2}=0 . \quad\binom{$ recall: }{$d^{2}=0}$
Proof

$$
\begin{aligned}
& d=\partial+\bar{\partial} \\
& \therefore d^{\partial}=0 \Leftrightarrow(\partial+\bar{\partial})^{2}=0
\end{aligned}
$$

Recall: on a smooth manifold, the esters derivative
 Satisfies $d^{2}=0$, and we define the De Khan cohomology as

$$
H_{O R}^{k}(M):=\frac{K_{R}\left(d: \Omega^{h}(M, R) \rightarrow J^{k+1}(M, \mathbb{R})\right)}{\operatorname{Im}\left(d: J^{k-1}(M, \mathbb{R}) \rightarrow J^{h}(M, \mathbb{R})\right)}
$$

Poincare lemma Every d-closed kform ω on a smooth manifold is locally exact, ie. locally on a small enough per set U,

$$
\omega=d \alpha \quad \text { on } U \text {. }
$$

But this is not the case globally on M, eg.

$M=S^{\prime}$
$d \omega=0 \ldots$ why?

$$
\omega \in \Omega^{\prime}\left(S^{\prime}\right), \omega\left(\partial_{\theta}\right)=1
$$

$\omega \neq d f$ since otherwise

$$
\int_{S^{\prime}} \omega=\int_{\rho}^{p} d f=f(\rho)-f(\rho)
$$

but $\quad \int_{s^{\prime}} \omega=2 \pi$.
Indeed, $\quad H^{\prime}\left(S^{\prime}\right)=\mathbb{R}[\omega]$.
Similarly:
We define the Dobbeaut cohoondogy groups of a convex macirid M as

The $\bar{\partial}$-Poincare lemma $A \bar{\partial}$-closed form on a coundex manifold is locally $\bar{\partial}$-exact.

$$
\omega \in \Omega^{1,0}(M) \quad \bar{\partial} \omega=0 .
$$

Puzzle Describe the holomorphic 1 -forms on the rand tors Tab.
To a conplex-manifold aficicionado,
$\operatorname{genus}(\underset{\uparrow}{M}):=\operatorname{dim}$ (holomorphic 1-forms on M)
Rienam surface

$$
\underbrace{C^{\alpha}(v, \mathbb{R})}_{s \Omega^{0,0}} \stackrel{\bar{\partial}}{\longrightarrow} \Omega^{0,1} \xrightarrow{\Omega_{\alpha}^{1,1}}
$$

Lonna (iJ̄े lemma) Let $\alpha \in J^{2}(M, \mathbb{R})$. Then
$d \alpha=0$ and $\alpha \in \Omega^{11}(M) \quad \Leftrightarrow$ Locally, $\alpha=i \partial \bar{\partial} \phi$ for

$$
\begin{aligned}
& \uparrow \\
& \text { ide. } \alpha \in \Omega^{2}(n, \mathbb{R}) \\
& \text { c } \Omega^{2}(M, C)=\Omega^{2,0} \oplus\left(\Omega^{1,1} \oplus \Omega^{0,2}\right.
\end{aligned}
$$

Proof (E) Suppose $\alpha=i \partial \bar{\partial} \phi$ locally, for some

$$
\begin{aligned}
& \phi \in C^{\infty}(u, \mathbb{R}) . \\
d \alpha= & (\partial+\bar{\partial}) \alpha \\
= & i(\partial+\bar{\partial}) \partial \bar{\partial} \phi \\
= & i\left(\sum_{=0}^{\partial \partial} \bar{\partial} \phi+\right. \\
= & 0
\end{aligned}
$$

Also,

$$
\begin{aligned}
\bar{\alpha} & =-i \bar{\partial} \partial \phi \\
& =i \partial \bar{\partial} \phi \\
& =\alpha
\end{aligned}
$$

$\therefore \quad \alpha$ is real-valued.
Also, dearly since $\alpha=i \partial \bar{\partial} \phi$, we have $\alpha \in \Omega^{\prime \prime}(M)$.
$\left(\Leftrightarrow\right.$ Suppose $\alpha \in \Omega^{2}(M, \mathbb{R})$ is closed (ie. $d \alpha=0$)
\therefore Frow usual Poincare lemma, we know that locally, the exists 1 form β on U s.t.

$$
\alpha=\delta \beta \quad \text { on } U
$$

We can decompose

$$
\begin{aligned}
& \beta \in \Omega^{\prime}(M, \mathbb{R}) \subseteq \Omega^{\prime}(M, \mathbb{C})=\Omega^{1,0}(M) \oplus \Omega^{0,1}(M) \\
& \beta \\
& \dot{\partial o}=\underbrace{\alpha}_{\in \Omega^{1,1}}=\underbrace{\partial \beta^{1,0}}_{\in \Omega \Omega^{2,0}}+\underbrace{\overline{\partial \beta^{1,0}}+\partial \beta^{0,1}}_{\in \Omega^{0,2}}+\underbrace{\partial \beta^{0,1}}_{0,0,1} \\
& \therefore=0 \\
& \partial_{0}=0
\end{aligned}
$$

Since $\quad \bar{\partial} \beta^{0,1}=0$, we know from the $\bar{\partial}$-Poincare lemma that locally we cen write

$$
\beta^{0,1}=\bar{\partial} f \quad f \in C^{\infty}(u, \mathbb{c})
$$

But

$$
\begin{aligned}
\bar{\beta}=\bar{\beta} \quad \Rightarrow \beta^{1,0} & =\overline{\beta^{0,1}} \\
\therefore & =\overline{\partial f}=\partial \bar{f}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \alpha & =\overline{\partial \partial f}+\bar{\partial} \bar{f} \\
& =\partial \bar{\partial}(f-\bar{f}) \\
& =i \partial \bar{\partial} \phi \quad \text { whee } \phi=2 \operatorname{Imf}
\end{aligned}
$$

Another look Suppose I have

$$
\alpha=i \partial \bar{\partial} \phi \quad \in J_{h^{1,1}}(u), \quad \phi \in C^{\infty}(u, \mathbb{R}) \text {. }
$$

So, if $z_{i}=x_{i}+i y_{i}$ are local holomaphic coordinates on U, then

$$
\begin{aligned}
& \alpha=i \partial \sum_{k=1}^{m} \frac{\partial \phi}{\partial \bar{z}_{k}} d \bar{z}_{k} \\
&=i \sum_{j, k} \underbrace{\frac{\partial^{2} \phi}{\partial z_{j}} \partial \bar{z}_{k}} \underbrace{d z_{j}}_{\uparrow} \wedge \underbrace{d z_{k}}_{\pi}=d x_{k}-i d y_{y_{j}} \\
& \partial_{z_{j}}=1 /\left(\partial \partial_{x_{i}}-i \partial_{y_{j}}\right) \\
& \partial_{\bar{z}_{j}}=1 / 2\left(\partial \partial_{x_{j}}+i \partial_{y_{j}}\right) \\
& \therefore \frac{\partial^{2} \phi}{\partial z_{j} \partial \bar{z}_{k}}=1 / 4\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right)\left(\frac{\partial \phi}{\partial x_{k}}+i \frac{\partial \phi}{\partial y_{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1 / 4\left[\frac{\partial^{2} \phi}{\partial x_{j} \partial x_{4}}+\frac{\partial^{2} \phi}{\partial y_{j} \partial y_{4}}+i\left(\frac{\partial^{2} \phi}{\partial x_{j} \partial y_{4}}-\frac{\partial^{2} \phi}{\partial y_{j} \partial x_{4}}\right)\right] \\
& =\phi_{j u}+i \psi_{j u} \\
& \text { Note : } \quad \phi_{j u}=\phi_{u j}, \psi_{j u}=-\psi_{u j} \\
& d z_{j} \wedge d \bar{z}_{u}=\left(d x_{j}+i d y_{j}\right) \wedge\left(d x_{u}-i d y_{u}\right) \\
& =d x_{j} \wedge d x_{u}+d y_{j} \wedge d y_{u}+i\left(d y_{j} \wedge d x_{h}-d x_{j} \wedge d y_{k}\right) \\
& \therefore \alpha=i \partial \bar{\partial} \phi \quad \bar{\alpha}=-i \sum_{j, 4} \phi_{j u} \\
& =i \sum_{j, \mu}\left(\phi_{j k}+i \psi_{j u}\right)\left(d x_{j} \wedge d x_{4}+d y_{j} \wedge d y_{k}+i\left(d y_{j} \wedge d x_{4}-d x_{j} \wedge d y_{k}\right)\right) \\
& \left.=\sum_{j, h}^{=0 \sum_{j \leftrightarrow h}} \frac{=0 j \leftrightarrow h}{\phi_{j u}\left(d x_{j} \wedge d x_{4}+d y_{j} \wedge d y_{4}\right)}-\psi_{j u}\left(d y_{j} \wedge d x_{4}-d x_{j} \wedge d y_{k}\right)\right] \\
& =-\sum_{j, h}\left[\psi_{j u}\left(d x_{j} \wedge d x_{u}+d y_{j} \wedge d y_{u}\right)+\phi_{j u}\left(d y_{j} \wedge d x_{u}-d x_{j} \wedge d y_{u}\right)\right]
\end{aligned}
$$

which is clearly a real 2 -form, and which is also closed (check), confirming the loren.

In 2 real dimensions: If $\phi \in C^{\infty}(u, \mathbb{R})$, then

$$
\begin{aligned}
i \partial \partial \phi & =-\phi_{11}(d y \wedge d x-d x \wedge d y) \\
& =2\left(\frac{1}{4}\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)\right) d x \wedge d y \\
& =1 / 2 \Delta \phi d x \wedge d y .
\end{aligned}
$$

Laplacian of ϕ.

So the theorem is saying that any closed real 2 -form of type $(1,1)$, ie.

$$
\alpha=\underbrace{i f(x, y)}_{\text {arbitrary smooth real function }} d z \wedge d \bar{z}
$$

locally, can be expressed as

$$
\alpha=\frac{1}{2}\left(\phi_{x x}+\phi_{y y}\right) d x \wedge d y
$$

In other words

$$
\begin{aligned}
\alpha & =f(x, y) i d z \wedge d \bar{z} \\
& =f(x, y) 2 d x \wedge d y \\
& =\frac{1}{2}\left(\phi_{x x}+\phi_{y y}\right) d x \wedge d y
\end{aligned}
$$

So the theorem is saying that any real smooth function

$$
f(x, y)
$$

can be expressed as the Laplacian of some ϕ locally,

$$
f=\frac{1}{4} \Delta \phi
$$

which we know is actually true, ie. we need to solve the PDE (Poisson's equation)

$$
\Delta \phi=4 f \quad f \in C^{\infty}(u, \mathbb{R})
$$

for ϕ. We can indeed solve Poisson's equation! For instance, suppose that $U=D$, the open unit dish, and suppose f extends continuasly to $\partial \bar{O}=S^{\prime}$. Then the solution to $\#$ is obtained using Green's functions and the Poisson leonel:

$$
\phi(x, y)=\frac{1}{\pi} \int_{\left(x^{\prime}, y^{\prime} \in D\right.} \underbrace{G\left(x, y, x^{\prime}, y^{\prime}\right)}_{\text {Green's function on unit dish }} f\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

$$
+\frac{2}{\pi} \int_{x^{\prime} \in \partial \bar{D}}^{\underbrace{P\left(x, x^{\prime}\right)}_{\text {Poisson kernel on unit dish }} f\left(x^{\prime}\right) d x^{\prime}}
$$

27. Kähles manifolds
(M, J) complex manifold.
So we have at each (real) tangent space $T_{p} M_{1}$,

Recall that a Rienomian metric g on a smooth manifold M is a (5 mooch) selection of an ines product g_{p} on each tangent spare $T_{p} M$, ie. $\left.g \in C^{\infty}\left(M, T^{*} M \otimes\right)^{*} M\right)$, such that for all $p \in M$,

$$
g_{p}: T_{p} M \otimes T_{p} M \longrightarrow \mathbb{R}
$$

is symmetric ad positive-definike $\left(g_{p}(v, v) \geq 0\right.$ and $\left.g_{p}(v, v)=0 \Leftrightarrow v=0\right)$

$g_{p}(v, w)$ ines product

Lemma Let

$$
(\cdot, \cdot) \quad: \vee \otimes \cup \longrightarrow \mathbb{R}
$$

be a symmetric bilinear map on a real vector space, satisfying

$$
(v, v) \geq 0 \text { for all } v \in V
$$

Then the following are equivalent:

$$
\begin{aligned}
& V \longrightarrow V^{v} \quad \text { injectie } \\
& V \longmapsto(v,-)
\end{aligned}
$$

(1) $(.$,$) is nondegererak, ie. (v, w)=0 \quad \forall w=7 v=0$.
(2) $($,$) is positive-definik, ie. (v, v)=0 \Leftrightarrow v=0$

Proof Exercise 1

Given (M, J) and a Rienamien metric g, we say the g is compatible with J if J preserves the ines product, i.e.

$$
g(J x, J y)=g(x, y)
$$

on each tangent space.

Given a compatible Rienannion metric g on (M, J), we define its fundamental form as

$$
\omega(x, y)=g(J x, y) \quad X, y \in T M .
$$

Note also how ω gets along with J :

$$
\begin{aligned}
\omega(J X, J Y) & =g\left(J^{2} X, J Y\right) \\
& =-g(X, J Y) \\
& =-g\left(J X, J^{2} y\right) \\
& =g(J X, Y) \\
& =\omega(X, Y) .
\end{aligned}
$$

Lemma ω is a real $(1,1)$-form.
Proof Firstly, ω is actually a 2 -form (ie. antisymmetric), since

$$
\begin{aligned}
\omega(Y, X) & =g(J Y, x) \\
& =g(J J Y, J X) \quad[g \text { compatible with }] \\
& =g(-Y, J X) \\
& =-g(J X, Y) \\
& =-\omega(X, Y) .
\end{aligned}
$$

In otter words, J preserves the fundamental form.
Is w of type $(1,1)$? We need to check that
(1) $\omega(x, y)=0$ if $x \in T^{100} M, \quad y \in T^{100} M$
and (2) $\omega(x, y)=0$ if $x \in T^{01} M, y \in T^{01} M$
(1): Well, we know that for all $X, Y \in T_{p} M$,

$$
\omega(J x, J y)=\omega(x, y) .
$$

But, if $x, y \in T^{1,0} M$, then $J x=i x, J y=i y$

$$
\begin{aligned}
\therefore \omega(J x, J y) & =\omega(i x, i y) \\
& =-\omega(x, y) . \\
\therefore \quad \omega(x, y) & =-\omega(x, y) \Rightarrow \omega(x, y)=0
\end{aligned}
$$

(2) is similer.

Similerly, g is a $(1,1)$-tensor, in the serse that
(1) $g(x, y)=0$ if $x, y \in T_{p}^{10} M$
(2) $g(x, y)=0$ if $x, y \in T_{p}^{0,1} M$.

Proot We duays have $g(J x, J y)=g(x, y)$.
So if $J X=i X, J Y=i 4$ then $L H S=-$ RUS $\Rightarrow L U S=R U=0_{0}$

Example local calculation Let M be a complex manifold with local coordinates Z_{1}, \cdots, Z_{m}.

Since $\omega \in \Omega^{l^{1,1}}(M)$, we have locally that

$$
\omega=i \sum_{j<4} \underbrace{\omega_{j u}}_{\in \mathbb{C}} d z_{j} \wedge d \bar{z}_{u}
$$

$d z \wedge d \bar{z}$

$$
=-2 i d x \wedge d y
$$

$$
\begin{aligned}
\omega_{j u} & =-i \omega\left(\partial_{z_{j}}, \partial_{z_{u}}\right) \\
& =-i g\left(J \partial_{z_{j}}, \partial_{z_{u}}\right) \\
& =g\left(\partial z_{j}, \partial \bar{z}_{k}\right)=\underbrace{g_{j u}}_{\in \mathbb{C}},
\end{aligned}
$$

Note: $\quad g_{n j}=\overline{g_{j u}}$, so that $\left(g_{j u}\right)$ - or equivalently $\left(w_{j u}\right)$ - is a positive definite $m \times m$ Hermitian matrix.

So: (M, J) almost complex manifold g Rienomion metric on M, compatible with J
... fondanertal form.
Recall that a symplectic form on a smooth manifold $M^{2 m}$ is a 2 -form $\omega \in \Omega^{2}(M)$ satisfying:
(1) ω is nondegenerate at cads $p \in M$:

$$
\omega_{p}(x, y)=0 \quad \forall y \in T_{\rho} M \Leftrightarrow \quad x=0
$$

(2) ω is closed, ie. $d \omega=0$

The fundamental form w of a compatible Rienannion metic g is nondegereccte, since g is nondegereate. Is it closed?

Definition A compatible Riemamion metric g on an a complex manifold (M, J) is called a Kähler metric if its funclanetal form w is closed.

A Kähler manifold is a complex manifold equipped with a Kähler metric.

Exercised Let V be a real finie-dimessional vector space and $\omega \in \Lambda^{2} V^{\star}$. Prove that the following are equivalent:

1. ω is nondegenerate ie.

$$
w(v, w)=0 \quad \forall w \Leftrightarrow v=0
$$

$$
\begin{aligned}
& \text { 2. } \underbrace{\omega \wedge \omega \wedge \cdots \wedge \omega}_{m} \neq 0 \\
& \left(m=\frac{1}{2} \operatorname{dim} V\right) \\
& \operatorname{dim} V=2 m
\end{aligned}
$$

We can phrase this condition on the Riemomion metric g entirely in terms of (M, J).
Thereon Let (M, J) be a complex manifold and g a Riemonnicn metic on M compatible with J. Let ω be the findoweral form of g. The following are equivdert:

1. $d \omega=0$
2. $\nabla J=0$, where ∇ is the Levi-Civita connection on M associated to g.
in otter words, parallel transport of is compatible with J

So, if (M, J, g) is a Kähler manifold, then, since the fundomulal form $\omega(X, Y):=g(J X, Y)$ is a $(1,1)$-form, we can wite locally

$$
\omega=i \partial \bar{\partial} \phi \quad, \quad \phi \in \operatorname{Co}^{0}(u, \mathbb{R})
$$

This means we can express the metic as:
NB: the metric

$$
\begin{aligned}
& N B: \text { le metric } \\
& \text { is a }(1, n) \text {-年ss! }
\end{aligned} g=\sum_{j, 4} g_{j u} d z_{j} \oplus d \bar{z}_{u}
$$

$$
\begin{aligned}
& g \leadsto \omega(x, y):= \\
& g(J x, y)
\end{aligned}
$$

$$
\omega \leadsto g(x, y)
$$

$$
=\omega(x, J Y)
$$

$$
\begin{aligned}
g_{j u} & =g\left(\partial_{z_{j}}, \partial \bar{z}_{u}\right) \\
& =\omega\left(\partial_{z_{j}}, J \partial_{z_{u}}\right) \\
& =-i \omega\left(\partial_{z_{j}}, \partial \overline{z_{u}}\right) \\
& =(-i)(i \quad \partial \bar{\partial} \phi)\left(\partial_{z_{j}}, \partial z_{z_{u}}\right) \\
& =\frac{\partial^{2} \phi}{\partial z_{j} \partial \bar{z}_{u}}
\end{aligned}
$$

So a Kähler metric is constructed locally from a singe smooth function. (Usually, a Rienamian metric is consturted locally from
seceal indeperdent fonctions).
At the moment we has:

- (M, J) conplex manifold
$\rightarrow g$ Rienamion metric is Kähler if

$$
\text { - } g(J x, J y)=g(x, y)
$$

- $\omega(X, Y):=g(J X, Y)$ is closed.

The otler point of view is to start with:

- (m, ω) a sympectic monfold
$\longrightarrow J$ integrable almost condex smuctrue s.t.

$$
\text { - } \omega(J X, J Y)=\omega(X, Y)
$$

Then $g(x, y):=\omega(X, J Y)$ is a Kähler metic.

Execise 3. Prove this

So, said differerly, a Kähler manifold is (M, J, g, ω) where:

- J is an integrable almost complex structure
- g is a Rienamion metric compatible with J and ω
- w is a symplectic form compatible with J and g.

Example 1 Every embedded oriented surface $M \subseteq \mathbb{R}^{3}$ naturally inherits a Rienawion metric from the ambient space \mathbb{R}^{3} :

And we know that M similarly inherit a natural integrable complex structure J.

Is g a Kähles metric for (M, J) ? Yes, because its fundamental form $\omega \in l^{2}(M)$ must be closed, ie. $d \omega=0$, since thee we no non-zeo 3 -forms on M !

Example 2 Let's work this out explicitly for S^{2}, in the (θ, ϕ) coordinate system:

$$
\begin{aligned}
\rho(\theta, \phi) & =(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \\
\therefore \partial_{\theta} & =\frac{\partial \rho}{\partial \theta}=(\cos \theta \cos \phi, \cos \theta \sin \phi,-\sin \theta) \\
\partial \partial_{\phi} & =\frac{\partial \rho}{\partial \phi}=(-\sin \theta \sin \phi, \sin \theta \cos \phi, 0)
\end{aligned}
$$

And so , since $e_{\theta} \stackrel{J}{\longmapsto} e_{\phi}, \quad e_{\phi} \stackrel{J}{\longmapsto}-e_{\theta}$,
we have:

$$
J=\left[\begin{array}{cc}
0 & -\sin \theta \\
\frac{1}{\sin \theta} & 0
\end{array}\right]
$$

$$
J\left(\partial_{\theta}\right)=\frac{\partial_{\phi}}{\sin \theta} \quad, \quad J\left(\partial_{\phi}\right)=-\sin \theta \partial_{\theta}
$$

The fundamental form of g is

$$
\omega=\omega_{\theta_{\phi}} \quad d \theta \wedge d \phi
$$

where $\quad \omega_{\theta_{\phi}}=g\left(J \partial_{\theta}, \partial_{\phi}\right)=g\left(\frac{\partial_{\phi}}{\sin \theta}, \partial_{\phi}\right)$

$$
\begin{aligned}
& g_{\theta \theta}=g\left(\partial_{\theta}, \partial_{\theta}\right)=1 \\
& g_{\theta \phi}=g\left(\partial_{\phi}, \partial_{\phi}\right)=0 \\
& g_{\phi \phi}=g\left(\partial_{\phi}, \partial_{\phi}\right)=\sin ^{2} \theta \\
& e^{\theta}=d \theta \\
& g>\begin{array}{c}
\theta \\
\theta\left(\begin{array}{cc}
1 & 0 \\
0 & \sin ^{2} \theta
\end{array}\right) .
\end{array} \\
& \therefore \operatorname{vd}_{g}:=e^{\theta} \wedge e^{\phi}=\sin \theta d \theta n d p \\
& e^{\phi}=\sin \theta d \phi \\
& \text { Set } e_{\theta}=\frac{\partial \theta}{\sqrt{\left(\partial_{\theta}, \partial_{\theta}\right)}}=\partial_{\theta}, e_{\phi}=\frac{\partial_{\phi}}{\sqrt{\left(\partial_{\phi}, \partial_{\phi}\right)}}=\frac{\partial_{\phi}}{\sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{\sin \theta} \cdot \sin ^{2} \theta \\
& \therefore \quad \omega=\sin \theta \\
& \therefore \quad \sin \theta d \theta \wedge d \phi
\end{aligned}
$$

By definition, this is the standard area 2 -form of S^{2}. Nae:

$$
\begin{aligned}
\int_{S^{2}} \omega & =\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \sin \theta d \theta d \phi \\
& =2 \pi \cdot \int_{\theta=0}^{\pi} \sin \theta \\
& =4 \pi
\end{aligned}
$$

which is te area of S^{2}.

Let's write ω in complex coordinates.

$$
\begin{aligned}
z & =\tan \theta / 2 e^{i \phi} \leftarrow(\text { Exercise } 4!] \\
\therefore \quad d z & =\frac{1}{2} \sec ^{2} \theta / 2 e^{i \phi} d \theta+i \tan ^{\theta} / 2 e^{i \phi} d \phi
\end{aligned}
$$

$\therefore \quad d 2 \wedge d z$

$$
\begin{aligned}
& =\frac{1}{2} \sec ^{2 \theta} \theta / 2 e^{i \phi} d \theta+i \tan \theta / 2 e^{i \phi} d \phi \\
& \wedge\left(\frac{1}{2} \sec ^{2} \theta / 2 e^{-i \phi} d \theta-i \tan ^{\theta} / 2 e^{-i \phi} d \phi\right) \\
& =-i \sec ^{2 \theta / 2} \tan \theta / 2 d \theta \wedge d \phi \\
& \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \\
& =-i \frac{\tan ^{\theta} / 2}{\cos ^{2} \theta / 2} d \theta \wedge d \phi \\
& \cos 2 \theta=2 \cos ^{2} \theta-1 \\
& =-i \frac{1}{1 / 2(1+\cos \theta)} \cdot \frac{\sin \theta}{1+\cos \theta} d \theta \wedge d \phi \\
& \therefore \omega=\frac{1}{2} i(1+\cos \theta)^{2} d z \wedge d \overline{2} \\
& \text { idzadi } \quad \cos ^{2}+\sin ^{2}=1 \\
& =2 d x \wedge d y \quad 1+\tan ^{2}=\sec ^{2} \\
& =2 i \cos ^{4}\left(\frac{\theta}{\gamma}\right) d z \wedge d \bar{z} \\
& =\frac{2 i}{\left(1+|z|^{2}\right)^{2}} d z \wedge d \bar{z} \\
& \text { Since } z=\tan \theta / 2 e^{i \phi} \\
& \therefore|z|^{2}=\tan ^{2} \theta / 2 \\
& =\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}} d x \wedge d y
\end{aligned}
$$

From this calculation we also see that, as expected,

$$
\omega=i \partial \bar{\partial} \phi
$$

for the smooth real function $\phi(2, \bar{z})=2 \log \left(1+|z|^{2}\right)$.
Check: $\quad i \partial \bar{\partial} \log (1+2 \overline{2})$

$$
\begin{aligned}
& =0)\left(\frac{z}{1+2 \bar{z}} d \bar{z}\right) \\
& =i\left(\frac{(1+2 \bar{z}) \cdot 1-2 \bar{z}}{(1+z \bar{z})^{2}}\right) d z \wedge d \bar{z} \\
& =\frac{2 i}{\left(1+|z|^{2}\right)^{2}} d z \wedge d \bar{z}
\end{aligned}
$$

We also find one mare way to compute the integral of ω over S^{2}, since now we can express it as an integral over \mathbb{R}^{2} :

$$
\int_{S^{2}} \omega=i \int_{\mathbb{C}} \frac{2}{\left(1+|z|^{2}\right)^{2}} d z \wedge d z
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{2}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y \\
& =2 \pi \cdot 2 \int_{r=0}^{\infty} \frac{r d r}{\left(1+r^{2}\right)^{2}} \quad \text { Let } \quad u=1+r^{2} \\
& =4 \pi \int_{u=1}^{\infty} \frac{d u}{u^{2}}=2 c d r \\
& \left.=-4 \pi \cdot \frac{u^{-1}}{1}\right]_{1}^{\infty} \\
& =4 \pi .
\end{aligned}
$$

Exonde $3 \quad \mathbb{R}^{2} \cong \mathbb{C}$ with standard complex stivetrue. Then te Euclidean metric g is Kähler:

\mathbb{C}

$$
\begin{aligned}
\cdot g\left(J_{v}, J_{w}\right) & =g(v, w) \quad \\
\cdot w\left(\partial_{x}, \partial_{y}\right) & =g\left(J_{x}, \partial_{y}\right) \\
& =g\left(\partial_{y}, \partial_{y}\right)=1
\end{aligned}
$$

$\therefore \omega=d x \wedge d y \quad$ closed $\sqrt{ }$

Con write this as:

$$
\begin{aligned}
\omega & =\frac{i}{2} d z \wedge d \bar{z} \\
& =\frac{i}{2}(d x+i d y) \wedge(d x-i d y) \\
& =\frac{i}{2}[-2 i d x \wedge d y] \\
& =d x \wedge d y
\end{aligned}
$$

$$
\omega=i \partial \bar{\partial} \phi \text { ? }
$$

$$
\text { Yes, for } \begin{aligned}
\phi & =\frac{1}{2}|z|^{2} . \\
& =1 / 2 \bar{z} .
\end{aligned}
$$

Chen:

$$
\begin{aligned}
i \partial \bar{\partial} \phi & =\frac{1}{2} \partial\left(\frac{\partial}{\partial \bar{z}}\left(\bar{z}_{z}\right) d \bar{z}\right) \\
& =\frac{i}{2} \partial(z d \bar{z}) \\
& =\frac{i}{2} d z \wedge d \bar{z} \\
& =\omega \quad l
\end{aligned}
$$

Similarly, on $\mathbb{R}^{2 m} \cong \mathbb{C}^{m}$:

$$
\begin{aligned}
\omega & =d x_{1} \wedge d y_{1}+\cdots+d x_{m} \wedge d y_{m} \\
& =\frac{i}{2} \sum_{j=1}^{m} d z_{j} \wedge d \bar{z}_{j} \\
& =i \partial \bar{\partial} \phi \quad \phi=\frac{1}{2} \sum_{j=1}^{m}\left|z_{j}\right|^{2}
\end{aligned}
$$

Example $4 \mathbb{C l}^{n}$.
We saw in example 2 that $\mathbb{C} \mathbb{P}^{\prime}$ is a Kähler maifadd. In local complex coordinates, i.e. on the chart U_{0} where $W_{0} \neq 0$,

$$
U_{0}: \quad\left(w_{0}: w_{1}\right) \longmapsto z=\frac{w_{1}}{w_{0}}
$$

the Kähler potential ϕ was

$$
\phi_{0}(z, \bar{z})=2 \log \left(1+|z|^{2}\right) .
$$

The faster of " 2 " doesin't lode right from a holomorphic perspective, So let's drop it. Also, let's write it more invoriantly:

$$
\begin{aligned}
\phi_{0}: U_{0} & \longrightarrow \mathbb{C} \\
\left(w_{0}: w_{1}\right) \longmapsto & \log \left(1+\left(\frac{w_{1}}{w_{0}}\right)^{2}\right) .
\end{aligned}
$$

Similarly, in the otter chat $U_{\text {, }}$ whee $W_{1} \neq 0$, we had

$$
\begin{gathered}
\phi_{1}: U_{1} \longrightarrow \mathbb{C} \\
\left(w_{0}: w_{1}\right) \longmapsto \log \left(1+\left|\frac{w_{0}}{u}\right|^{2}\right)
\end{gathered}
$$

Note that on $U_{0} \cap U_{1}, \phi_{0}$ does not agree with ϕ_{1}, instead:

$$
\phi_{1}=\phi_{0}+\log \left(\left|\frac{w_{0}}{w_{1}}\right|^{2}\right)
$$

So the functions

$$
\phi_{i}: U_{i} \longrightarrow \mathbb{C}
$$

don' glue together to give a globally defined function on $\mathbb{C P}$!

However, the 2 -forms

$$
\omega_{0}=i \bar{\partial} \phi_{0} \quad \text { and } \quad \omega_{1}=i \partial \bar{\partial} \phi_{1}
$$

do agree on $U_{0} \cap U_{1}$, since

$$
\begin{aligned}
& \partial \bar{\partial} \log \left(\left|\frac{w_{0}}{w_{1}}\right|^{2}\right)=0 \quad \text { on } U_{0} n U_{1} \\
= & \partial \bar{\partial} \log \left(|z|^{2}\right) \quad \text { in } U_{1} \text {-chat } \\
= & \partial\left(\frac{2}{\overline{2} 2} d \overline{2}\right) \\
= & 0
\end{aligned}
$$

Hence we do get a globally defined 2 form ω on $\mathbb{C} \mathbb{P}^{\prime}$!

$$
\left.\omega\right|_{U_{i}} \quad \omega_{i} \in \Omega^{2}\left(U_{i}, \mathbb{R}\right) \quad,\left.\omega_{0}\right|_{U_{0} U_{1}}=\left.\omega_{1}\right|_{U_{0} \cap U_{1}}
$$

In summary: the Kähles form on $\mathbb{C} \mathbb{P}^{\prime}$ is given locally by

$$
\omega=\frac{1}{\left(1+|z|^{2}\right)^{2}} i d z \wedge d \bar{z}, \quad \int_{\pi p^{\prime}} \omega=2 \pi
$$

Similarly, on $\mathbb{C} l^{n}$ we have the chats

$$
U_{i}: w_{i} \neq 0 \quad\left(w_{0}: w_{1}: \cdots: w_{n}\right) \longmapsto(\underbrace{\frac{w_{o}}{w_{i}}}_{z_{1}}, \cdots, \underbrace{\frac{w_{i-1}}{w_{i}}}_{z_{i}}, \underbrace{\frac{w_{i+1}}{w_{i}}}_{z_{i+1}}, \cdots, \underbrace{w_{n}}_{z_{n}})
$$

and the Kähler potentials on each U_{i} are:

$$
\begin{array}{ll}
\phi_{i} & : U_{i} \longrightarrow \mathbb{R} \\
\quad\left(w_{0}: w_{1}: \ldots: w_{n}\right) \longmapsto \log \left(\sum_{j=0}^{n}\left|\frac{w_{j}}{w_{i}}\right|^{2}\right)
\end{array}
$$

and we define a global 2 -form ω on $\mathbb{C} \mathbb{P}^{n}$ via

$$
\left.w\right|_{U_{i}}:=i \partial \bar{\partial} \phi_{i}
$$

Exercise Fa) (heck ω is well-defined as a global 2 -form
b) Comple ω in one of the charts given by the local coordinates $\left(z_{1}, \cdots, z_{n}\right)$.
$\left(M^{2 n}, \omega\right)$ synplectic manifold,

$$
\begin{aligned}
& \operatorname{Vol}_{\omega} \in S^{2 m}(M) \\
& \text { Vol }_{\omega}:=\frac{\omega^{m}}{m!} \neq 0 \text { Liouville form } \\
& \text { at each } p \in M \quad J\left(\partial_{x_{i}}\right.
\end{aligned}
$$

$\left(M^{2 m}, g\right)^{\wedge}$ oneved Rienanian manifold

$$
\operatorname{volg} \in \Omega^{2 n}(M)
$$

Let $p \in M$. Let

$$
e_{1}, \cdots, e_{2 m}
$$

be an nerved orthonormal basis for $T_{p} M$. Has clual basis

$$
\begin{gathered}
e^{\prime}, \cdots, e^{2 m} \\
\operatorname{vol} l_{g}:=e^{\prime} \wedge \cdots \wedge e^{2 m} \\
\subseteq
\end{gathered}
$$

Definition A_{n} onentation on an n-dimersional real vector space V is a choice

$$
\begin{aligned}
&\text { or } \left.\in \frac{\Lambda^{n} V}{\sim}\right] \text { a } 2 \text {-element set, as } \Lambda^{n} V \\
& \text { is a } 1 \text {-dimwsion. } \\
& \text { veer space. }
\end{aligned}
$$

where $w \sim w^{\prime}$ if $w=k w^{\prime}$ for some $k>0$.
We say on ordered basis e_{1}, \ldots, e_{n} for V is oriented if

$$
\left[e_{1} \wedge \cdots n e_{n}\right]=\text { or } .
$$

Exercise 6 Suppose that V is an n-dimensinal real mimer product space equipped with on orientation. Show that the formula

$$
\text { Vol }:=e_{1} \wedge \ldots \wedge e_{n}
$$

where e_{1}, \ldots, e_{n} is an oriented orthonormal basis for V, is independent of the choice of oriented orthonormal basis.

Lemma On a Kähler manifold (M, J, g, ω),

$$
\operatorname{vol}_{\omega}=\operatorname{vol}_{g}
$$

Proof In local coordinates $\left(z_{1}, \cdots, z_{m}\right)$ whee $z_{i}=x_{i}+i y_{i}$, we have

$$
\omega=i \sum_{j, 4} h_{j u} d z_{j} \wedge d \bar{z}_{u} \quad g=\sum_{j, 4} h_{j u} d z_{j} \otimes d \bar{z}_{u}
$$

whee $h_{i j}, j=1 \ldots m$ is a Hermitian monix. Now,

Use:
idundz $=2 d x d y$

On the otter hand, an orthonormal basis for $T_{p} M$ is
Exercise $8!\rightarrow e_{i}=\cdots \quad, f_{i}=\cdots \quad i=1 \ldots m$
with dual basis

$$
e^{i}=\cdots \quad, \quad f^{i}=\cdots
$$

So that

$$
\begin{aligned}
& \text { Vol }_{g}=e^{\prime} \wedge f^{\prime} \wedge \cdots \wedge e^{m} \wedge f^{m} \\
& \underset{8!}{\text { port exprais }} \longrightarrow=2^{m} \operatorname{deth} d x_{1} \wedge d y_{1} \wedge \ldots \wedge d x_{m} \wedge d y_{m}
\end{aligned}
$$

$$
=v o l_{\omega} .
$$

3. Complex Lire Bundles with Connection
3.1. Cocyde data for complex line bundles Recall:

A complex line bundle over a smooth manifold M is a 1 -dimensional complex vector bundle $\pi: L \longrightarrow M$.

A smooth section of a line bundle L is a smooth map

$$
s: M \longrightarrow L
$$

such that $\pi \circ S=i d_{M}$.
Two line bundles L and L^{\prime} we M ave isomorphic if the exists a diffeomorphism ϕ making the following diagram commute

and which restricts to a linear isomorphism

$$
\phi_{x}: L_{x} \longrightarrow L_{x}^{\prime}
$$

on each fiber.

I want to phrase all of the above in terms of local data (cocydes).
Firstly, given a line bundle L over M. Let $\left(U_{i}\right)_{\text {iiI }}$ be an open coors of M with local trivialization

$$
\psi_{i}:\left.L\right|_{U_{i}} \cong U_{i} \times \mathbb{C}
$$

Then for each $i e I$, we get a local section $s_{i} \in C^{C o}\left(U_{i}, L\right)$ by

$$
s_{i}(x):=\psi_{i}^{-1}(x, 1)
$$

On $U_{i} \cap U_{j}$, we will have

$$
s_{j}=g_{i j} s_{i}
$$

for the transition functions $g_{i j}: U_{i} \cap U_{j} \longrightarrow \mathbb{C}^{x}$ defined as $g_{i j}=\frac{s_{j}}{s_{i}}$.

Note that, in terms of the original local trividizatins $\left(U_{i}, \psi_{i}\right)$ of the line bundle, we can write

$$
\begin{aligned}
V_{j} \circ \psi_{i}^{-1}: U_{i j} \times \mathbb{C} & \longrightarrow U_{i j} \times \mathbb{C} \\
(x, z) & \longmapsto(x, \underbrace{\left.g_{i j}(x) z\right)}_{\in \mathbb{C}^{x}}
\end{aligned}
$$

where $\quad U_{i j}=\left\|_{i}\right\|_{j}$ etc.
Lemma The transition functions $\left(g_{i j}\right)$ satisfy the following cocyde condition:

$$
\begin{array}{llll}
\text { - } & g_{i i}=1 & \text { on } U_{i} \\
\text { - } & g_{i j} g_{j i}=1 & \text { on } U_{i j} \\
\text { - } & g_{i j} g_{j u} g_{k i}=1 & \text { on } & U_{i j u}
\end{array}
$$

Exercise 1 Prate this,

Example Consider $S 1$, and $L=$ "a square root of the tangent bindle":

(This is a real line bundle, but we con tensor it with \mathbb{C} to make it a complex line bundle.)

L does not has a global nonvanishing smooth section, but it does have local ones:

$$
\begin{aligned}
& U_{0}=S^{\prime} \backslash\{(0,-1)\} \\
& S_{0}\left(e^{i \theta}\right)=e^{i(\theta / 2+\pi / 4)}
\end{aligned}
$$

$$
\begin{aligned}
& U_{1}=S^{\prime} \backslash\{(0,1)\} \\
& S_{0}\left(e^{i \theta}\right)=e^{i(\theta / 2+\pi / 4)}
\end{aligned}
$$

$$
S_{1}=\left[\begin{array}{lll}
+1 & S_{0} & \text { for } x>0 \\
-1 & S_{0} & \text { for } x<0
\end{array}\right]
$$

on $U_{0} \cap V_{1}$

So the transition function is

$$
g_{01}= \begin{cases}+1 & \text { if } \quad x>0 \\ -1 & \text { if } \quad x<0\end{cases}
$$

Example Consider the tangent bundle of S^{2} :

Each tangent space is naturally a 1-dimensinal complex vector space using the complex structure J.
$\frac{\text { Exercise } 1^{\prime}}{}$ Work at the transition functions of this bundle, using the "stereographic projection from north and south pale" charts.

The transition functions complexly encode the line handle up to isonnophism.
Definition Let $\left(M_{1}\left(U_{i}\right),\left(g_{i j}\right)\right)$ be the data of:

- a smooth manifold M
- an open caving $\left(U_{i}\right)$
- Smooth function $g_{i j}: U_{i j} \longrightarrow \mathbb{C}^{x} \quad$ satisfying the coyle conditions

Then we define the lis bundle

$$
L\left(M_{1}\left(u_{i}\right),\left(g_{i j}\right)\right):=\bigcup_{i \in I} U_{i} \times \mathbb{C} / \sim
$$

where $(x, z)_{i} \sim\left(x, g_{i j}(x) z\right)_{j}$.

Exercise Chede the validity of this construction. Whee do the cocycle conditions get used?

Proposition Let $L \rightarrow M$ be a lire bundle, with local trivialization $\left(v_{i}, \psi_{i}\right)$. Then there is a canonical isomorphism

This allows us to express sections of L in terms of cocycle date.
Proposition Under the abuse isomorphism, a smooth section s of L corresponds to a collection of smooth
$f_{i}: U_{i} \longrightarrow \mathbb{C}$
satisfying

$$
f_{j}=g_{j i} f_{i} \quad \text { on } \quad U_{i j}
$$

Exercise 4 Chede this!

Exande For the "Square rook of the tangent bundle of s"" line bundle L earlier, a smooth section of L corresponds to a pair of smooth functions

$$
f_{0}: U_{0} \rightarrow \mathbb{R} \quad, \quad f_{1}: U_{1} \longrightarrow \mathbb{R}
$$

such that on $U_{0} \cap U_{1}$,

We con say that a smooth section of L corresponds to a smooth function

$$
f:[0,2 \pi] \rightarrow \mathbb{C}
$$

having antiperiodic boundary conditions, $f(2 \pi)=-f(0)$.
Node that such a function must be zero somewhere, which shows that L is nontrivial (as a real bundle).

Exercise 5 ls Lo(nontrivial as a complex line bundle?

We can also say when two line bundles constructed from cocydes will be isomorphic.

Lemma Let $\left(M,\left(u_{i}\right),\left(g_{i j}\right)\right)$ and $\left(M,\left(u_{i}\right),\left(g_{i j}^{\prime}\right)\right)$ be cocycle data. Then they are isomorphic if and only if the exits nowavishing smooth functions

$$
h_{i}: U_{i} \longrightarrow \mathbb{C}^{x}
$$

such that

$$
g_{i j}^{\prime}=\frac{h_{i}}{h_{j}} g_{i j} \quad \text { on } U_{i j}
$$

Exercise 6 Prove this!
3.2. Cohomological classification of line bundles
(See Schottenloher, Lecture notes in geometric quantization, appendix E)
Definition Let X be a topological space, and $\left(U_{i}\right)$ an open coup. A Cech k-cochain on X with values in a disode abelion group A is a family of locally constant functions

$$
\eta=\left(\eta_{i_{0} \cdots i_{u}}: U_{i_{0}} n \ldots n U_{i_{u}} \longrightarrow A\right)
$$

We write the collection of Tech cochains as $\breve{C}^{h}\left(X,\left(U_{i}\right) ; A\right)$
There is a codoundary map

$$
A=\|
$$

defined by

$$
\begin{aligned}
& \delta: \breve{C}^{k}\left(X,\left(U_{i}\right), A\right) \longrightarrow \breve{C}^{k+1}\left(X,\left(U_{i}\right), A\right) \\
& \text { by } \left.\mathrm{v}_{0} \mathrm{NL}_{1}^{-2} \varliminf_{5}^{3} \bigcirc\right)_{u_{1}}^{u_{0}} \\
& \begin{array}{l}
\eta_{0}: 0_{0} \rightarrow A \quad \eta \in C^{0} \\
\eta_{1}: u_{1} \rightarrow A \quad \delta \eta \in C^{\prime}
\end{array} \\
& \left(\delta \eta_{01}=(-1)^{\circ} \eta_{1}+(-1)_{0}^{1}\right. \\
& =\eta_{1}-\eta_{0} \\
& (\delta \eta)_{i_{0} \cdots i_{u+1}}:=\sum_{j=0}^{k+1}(-1)^{j} \eta_{i_{0} \cdots \hat{i}_{j} \cdots i_{u}}=\eta_{1}-
\end{aligned}
$$

which squares to 2000 , ie. $S^{2}=0$.
Execise 1 Chede that $\delta^{2}=0$.

We define the $k^{\text {th }}$ (exch cohomology group of X, subordinate to the open caver $\left(u_{i}\right)$, as

$$
\breve{H}^{h}\left(X,\left(U_{i}\right) ; A\right):=\frac{\operatorname{Ker}\left(\delta: Z^{h} \rightarrow Z^{n+1}\right)}{\operatorname{Im}\left(\delta: Z^{n-1} \rightarrow Z^{h}\right)}
$$

If $\left(V_{j}\right)_{j \in J}$ is a refinement of $\left(U_{i}\right)_{i \in S}$ Lie. for ever $j \in J$ there exists $\left.i_{(j)}\right) \in I$ such that $\left.V_{j} \subseteq U_{(i)}\right]$ then the is a natural homomorphism

$$
\check{H}^{h}\left(X,\left(u_{i}\right) ; A\right) \rightarrow \check{H}^{n}\left(X,\left(U_{j}\right) ; A\right)
$$

We define the $i^{\text {th }}$ Coach codromdogy grasp of X with coefficients in A as the direct limit, ie.

$$
\breve{H}^{n}(X ; A):=\frac{\lim _{\text {opec coss } U}}{} \breve{H}(X, U, A) .
$$

Happily, if $U=\left(U_{i}\right)$ is a Leray cover (ie. all innescections $U_{i_{0}} \cap \cdots \cap U_{i_{u}}$ are contractible), then we have a nature isomorphism

$$
\breve{H}^{l}(X, U ; A) \cong \breve{H}(X ; A)
$$

Example $O_{n} S_{1}^{1}$

is a Leray cowr. A o-cochain, with coefficiers in \mathbb{Z} (say), is a collection of 3 inkeges:

$$
\eta_{i} \in \mathbb{Z}
$$

Its coloundory is

$$
\delta_{\eta}= \begin{cases}\left(\delta_{\eta}\right)_{01}=\eta_{1}-\eta_{0} & \text { on } U_{01} \\ \left(\delta_{\eta}\right)_{02}=\eta_{2}-\eta_{0} & \text { on } U_{0 a} \\ \left(\delta_{\eta}\right)_{12}=\eta_{2}-\eta_{1} & \text { on } U_{n}\end{cases}
$$

So, $\quad \delta_{\eta}=0 \Leftrightarrow \eta_{0}=\eta_{1}=\eta_{2}$.
So, $\quad \breve{H}^{0}\left(S_{i}^{1} ; \mathbb{Z}\right) \cong \mathbb{Z}$.
Exercise 2 Comple $\breve{H}^{1}\left(S^{\prime} ; \boxtimes\right)$ in a similer way.

Theorem Let M be a topological space. Then there is a natural bijection

$$
\left\{\begin{array}{c}
\text { Isomorphism classes o } \\
\text { conner line barnes } L \text { ar } M
\end{array}\right\} \cong \breve{H}^{2}(M ; \mathbb{Z})
$$

Proof the bijection is given at the level of cocycle dater by:

$$
\left(L,\left(U_{i}\right),\left(g_{i j}\right)\right) \longmapsto\left(\eta_{i j k} \in \mathbb{Z}: U_{i} \cap U_{j} \cap U_{k} \neq \phi\right)
$$

where η is defined as follows. On $U_{i} \cap U_{j}$ we have smooth function

$$
g_{i j}: U_{i} \cap U_{j} \longrightarrow \mathbb{C}^{x}
$$

Satisfying

$$
g_{i j} g_{j n} g_{k_{i}}=1 \quad \text { on } U_{i} \cap U_{j} \wedge U_{k}
$$

Since $V_{i} \cap V_{j}$ is contractible, we can tale the \log of $g_{j j}$ on $U_{i} \cap U_{j}$, and it will satisfy

$$
\log \left(g_{i j}\right)+\log \left(g_{i k}\right)+\log \left(g_{k i}\right)=n \cdot 2 \pi i
$$

on $V_{i}\left\|U_{j}\right\|_{u}$. This integer $n(i, j, k)$ is ar mech cocyde! That is,

$$
\eta_{i j u}=n(i, j, 4) \text { on } U_{i n} U_{j} \cap U_{u} \text {. }
$$

Exercise 3 Fill in the rest of this proof!

Example For the square rook line bundle on S^{\prime},

Take $\log \left(g_{01}\right)=\pi i$
Then eg. on $U_{0} \cap U_{1} \cap U_{1}$,

$$
\begin{aligned}
& \log \left(g_{01}\right)+\log \left(g_{11}\right)+\log \left(g_{10}\right) \\
= & \pi i+0-\pi i=0
\end{aligned}
$$

At ar rate, $[\eta]=0$ in $\check{H}^{2}\left(s^{1} ; z\right)$.

It tuns at that on a smooth manifold $M, \overline{\text { Tech ch colomdoogy }}$ with coefficients in \mathbb{R} is the save as De Khan cohomology!
Theorem On a smooth manifold M, there is a natural isomorphism

$$
I: H_{d R}^{k}(M ; \mathbb{R}) \longrightarrow \breve{H}^{k}\left(M_{i} \mathbb{R}\right)
$$

Proof We will only write down the map for $k=2$.
Choose a Leray cove $\left(U_{i}\right)$ of M.

Since each open set U_{i} is contractile, we have

$$
\begin{aligned}
d \omega & =0 & \text { on } U_{i} \\
\Rightarrow \quad \omega & =d \beta_{i} & \text { on } U_{i}
\end{aligned}
$$

for 1 -forms $\quad \beta_{i} \in J^{\prime}\left(u_{i}, \mathbb{R}\right)$. Similarly,

$$
\begin{aligned}
d\left(\beta_{i}-\beta_{j}\right) & =\omega-\omega \quad \text { on } \quad U_{i} \cap U_{j} \\
& =0 \\
\Rightarrow \quad \beta_{i}-\beta_{j} & =d f_{i j} \quad \text { on } U_{i} \cap U_{j}
\end{aligned}
$$

for 0 -forms $f_{i j} \in \mathcal{J i}^{0}\left(U_{i} U_{j}, \mathbb{R}\right)$. Now,

$$
d\left(f_{i j}+f_{j u}+f_{k i}\right)=0 \text { on } U_{i} \cap U_{j} \wedge U_{u}
$$

and hence

$$
\eta_{i j k}=f_{i j}+f_{j u}+f_{4 i} \in \mathbb{R} \text { is locally constant on } U_{i} U_{j} U_{j} U_{k} \text {. }
$$

We have $\delta_{\eta}=0$ on $U_{i} \cap U_{j} \cap U_{h} \cap V_{l}$.
Sex $V(w):[\eta]$.

Putting these two results together gives a map
whee the "integral elevens" in $H_{d R}^{2}(M ; \mathbb{R})$ are the classes of the forms sud that

$$
\int_{\Sigma} \omega \in \mathbb{Z} \quad \text { for al creed suffices } \Sigma \subseteq M \text {. }
$$

3.3. Hdomorphic line bundles

Definition A complex line bundle t: $L \rightarrow M$ over a complex manifold is a holomorphic line bundle if L is equipped with the structure of a complex manifold and π is a hdomorphic map.

Recall that the cocycle data for a smooth topdogical line bundle L over a smooth manifold M is given by an open caving $\left(U_{i}\right)$ of M and transition functions

$$
g_{i j}: U_{i} \cap U_{j} \longrightarrow \mathbb{C}^{x}
$$

Satisfying:

$$
\begin{aligned}
& \text { - } g_{i i}=1 \quad \text { on } U_{i} \\
& \text { - } g_{i j} g_{i i}=1 \quad \text { on } U_{i} \cap U_{j} \\
& \text { - } g_{i j} g_{j u} g_{u i}=1 \quad \text { on } U_{i} \cap U_{j} \wedge U_{u} \text {. }
\end{aligned}
$$

Similarly, the data of a holomorphic line bundle is the same, except that the transition functions $g_{i j}$ must be hdomordhic.

Example Since

$$
\mathbb{C} \mathbb{P}^{\prime}=\left\{1 \text {-dimensional subspaces of } \mathbb{C}^{2}\right\} \text {, }
$$

these is a natural taurdogical line bundt τ over $\mathbb{C P}^{1}$,

Said differently,

$$
\tau=\left\{(l, v): l \in \mathbb{C} \mathbb{P}^{\prime}, v \in l\right\}
$$

We have local trivializations as follows. $O_{n} U_{0}\left(\right.$ whee $\left.z_{0} \neq 0\right)$

$$
\begin{aligned}
& \psi_{0}:\left.\tau\right|_{U_{0}} \longrightarrow U_{0} \times \mathbb{C} \\
& ([1: 2], \lambda(1,2)) \longmapsto([1: 2], \lambda)
\end{aligned}
$$

while on U_{1},

$$
\begin{aligned}
& \psi_{1}:\left.\tau\right|_{U_{1}} \longrightarrow U_{1} \times \mathbb{C} \\
& ([w: 1], \mu(2,1)) \longmapsto([w: 1], \mu)
\end{aligned}
$$

So the local sections are

$$
\begin{array}{ll}
S_{0}([1: 2])=(1,2) & \text { on } U_{0} \\
S_{1}([w: 1])=(w, 1) & \text { on } U_{1}
\end{array}
$$

and the transition functions are given by

$$
s_{1}=g_{01} s_{0} \text { on } U_{0} \cap U_{1}
$$

ie. $\quad S_{1}([1: 2])=S_{1}\left(\left[\frac{1}{2}: 1\right]\right)$

$$
\begin{aligned}
& =\left(\frac{1}{2}, 1\right) \\
& =\frac{1}{2}(1,2) \\
& =\underbrace{g_{91}([1: 2])}_{=\frac{1}{2}} S_{0}
\end{aligned}
$$

This is a holomorphic function, so τ is a hdomorphic live bundle.
A holomorphic section s of τ will take the form

$$
\begin{array}{ll}
\left.s\right|_{v_{0}}=f_{0} s_{0} & \text { on } U_{0} \\
\left.s\right|_{U_{1}}=f_{1} s_{1} & \text { on } U_{1}
\end{array}
$$

And we need

$$
\begin{aligned}
f_{0} s_{0} & =f_{1} s_{1} \quad \text { on } U_{0} \cap U_{1} \\
\text { ie. } \quad \frac{f_{0}}{f_{1}} & =\frac{s_{1}}{s_{0}} \quad \text { on } U_{0} \cap U_{1}
\end{aligned}
$$

In terms of the chats

$$
\begin{aligned}
\phi_{0}: U_{0} & \rightrightarrows \mathbb{C} & \phi_{1}: U_{1} & \longrightarrow \mathbb{C} \\
& {[1: 2] } & \longmapsto 2 & \\
& & &
\end{aligned}
$$

if we set

$$
\hat{f}_{i}:=f_{i} \phi_{i}^{-1}
$$

we thefore need:

$$
\begin{aligned}
f_{0}\left(\left[z_{0}: z_{1}\right]\right) & =g_{01}\left(\left[z_{0}: z_{1}\right]\right) \\
& =z_{0} / z_{1} \quad \text { on } U_{0} \cap U_{1}
\end{aligned}
$$

i.e.

$$
\frac{\hat{f}_{0} \cdot \phi_{0}\left(\left[z_{0} \cdot z_{1}\right]\right)}{\hat{f}_{1} \circ \phi_{1}\left(\left[z_{0} \cdot z_{1}\right]\right)}=z_{0} / 2_{1} \quad \text { on } \quad U_{0} \cap U_{1}
$$

i.e. $\frac{\hat{f}_{0}\left(21 / 2_{0}\right)}{\hat{f}_{1}\left(2 / z_{1}\right)}=20 / 2_{1}$ on $V_{0} n V_{1}$
i.e. $\frac{\hat{f}_{0}(z)}{\hat{f}_{1}(1 / 2)}=1 / 2$ or $U_{0} \cap V_{1}$
i.e. we need holomorphic fanctions

$$
\left\{\hat{f}_{0,} \hat{f}_{1}: \mathbb{C} \longrightarrow \mathbb{C}\right\}
$$

satisfying

$$
\hat{f}_{1}\left(\frac{1}{2}\right)=2 \hat{f}_{0}(2) . \quad \text { on } \mathbb{C} \backslash\{0\}
$$

Is this possible? Well, we can expand

$$
\hat{f}_{0}=a_{0}+a_{1} 2+\cdots \quad \hat{f}_{1}=b_{1}+b_{1} 2+\cdots
$$

so we need, on $\mathbb{C} \backslash\{0\}$,

$$
\begin{aligned}
b_{0}+b_{1} 2^{-1}+\cdots & =z\left(a_{0}+a_{1} z+\cdots\right) \\
& =a_{0} z+a_{1} z^{2}+\cdots
\end{aligned}
$$

which has the unique solution $a_{i}=b_{i}=0$ for all i.

$$
0 \quad H 0 l\left(\mathbb{C} \mathbb{P}^{1}, \uparrow\right)=\{0\} .
$$

On the otter hand,

$$
\operatorname{HOl}\left(\mathbb{C l P}^{1}, \tau^{v}\right) \cong\left(\mathbb{C}^{2}\right)^{x} \quad(\text { check! })
$$

and hence is 2-dimensional.
3.3. Connections an line bundles

Definition Let $L \rightarrow M$ be a complex line bundle owe a smooth manifold. A connection ∇ on L consists of the date of

$$
\nabla_{x} s \in C^{\infty}(M, L)
$$

for ever $\quad X \in C^{0}(M, T M)$, se $\operatorname{Co}^{\infty}(M, L)$, Satisfying:
(1) $\nabla_{f x+g y}(s)=f \nabla_{x} s+g \nabla_{y} s$
(2) $\nabla_{x}(f s)=X(f) s+f \nabla_{x} s$

Given local trivializations for L with accompanying non-vonishing local sections S_{i} on U_{i}, we can write

$$
\nabla_{x} s_{i}=\alpha_{i}(x) s_{i}
$$

for some 1 -forms $\alpha_{i} \in J^{1}\left(U_{i}\right)$. Notice that on $U_{i} \cap U_{j}$

$$
\begin{aligned}
s_{j} & =g_{i j} s_{i} \\
\therefore \nabla_{x} s_{j} & =\nabla_{x}\left(g_{i j} s_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \alpha & \therefore(x) \underset{=g_{i j} s_{i}}{s_{j}}=\operatorname{dg}_{i j}(x) s_{i}+g_{i j} \alpha_{i}(x) s_{i} \\
\therefore g_{i j} \alpha_{j} & =d_{g_{i j}}+g_{i j} \alpha_{i} \text { on } U_{i}\left(U_{j}\right. \\
\therefore \alpha_{j} & =\alpha_{i}+\frac{d g_{i j}}{g_{i j}} \text { on } U_{i} n U_{j}
\end{aligned}
$$

Conversely, given a collection of l-forms $\alpha_{i} \in J^{\prime}\left(u_{i}\right)$ satisfying ($*$), we can construct a unique connection whose associated local 1-forns are the α_{i}. So:
connection ∇ on $(M, L)=\left\{\begin{array}{cc}1 \text {-forms } \alpha_{i} \text { on } U_{i} \text { satisfying } \\ \otimes<\end{array}\right)$

Lemma The abelion group $\Omega^{\prime}(M, \mathbb{C})$ acts freely and transitively on the set Com (L) of connections on L, via the formula

$$
(\beta \cdot \nabla)_{x}(s):=\nabla_{x} s+\beta(x) s .
$$

Proof Firstly, check whether $\beta \cdot \nabla$ is indeed a connection?
Satisfies (1)?
Satisfies (2)?

Chess:

$$
\begin{aligned}
(\beta \cdot \nabla)_{x}(f s) & =\nabla_{x}\left(f_{s}\right)+\beta(x) f s \\
& =X(f)_{s}+f \nabla_{x} s+\beta(x) f_{s} \\
& =X(f) s+f\left((\beta \cdot \nabla)_{x} s\right)
\end{aligned}
$$

Grap action?

$$
\beta^{\prime} \cdot(\beta \cdot \nabla) \stackrel{?}{=}\left(\beta^{\prime}+\beta\right) \cdot \nabla \text { ? }
$$

Action is free?

$$
\begin{array}{ll}
\text { Suppose } & \beta \cdot \nabla=\nabla \\
(0 \nabla) s=T
\end{array}
$$

$$
\begin{array}{ll}
\text { pose } & \beta \cdot V \\
\Rightarrow & (\beta \cdot \nabla)_{x} s=\nabla_{x} s \quad \text { for all } X, s
\end{array}
$$

$$
\Rightarrow \quad \nabla_{x} s+\beta(x) s=\nabla_{x} s
$$

$$
\Rightarrow \beta(x)_{s}=0 \quad \text { for all } x, s
$$

$$
\Rightarrow \quad \beta=0 .
$$

Action is transitive?
Given connections ∇, ∇^{\prime}, choose local non-vanishing sections s_{i} on U_{i}. We can write

$$
\begin{aligned}
\nabla_{x} s_{i} & =\alpha_{i}(x) s_{i} \\
\nabla_{x}^{\prime} s_{i} & =\alpha_{i}^{\prime}(x) s_{i}
\end{aligned}
$$

for 1 -forms α_{i} on U_{i}. Now, consider the $1-$ forms β_{i} :

$$
\left(\nabla_{x}^{\prime}-\nabla_{x}\right)\left(s_{i}\right)=\underbrace{\left(\alpha_{i}^{\prime}-\alpha_{i}\right)(x)}_{\beta_{i}} s_{i}
$$

On U_{j}, we know that

$$
\begin{aligned}
& \alpha_{j}^{\prime}=\alpha_{i}+d \log \left(g_{i j}\right) \\
& \alpha_{j}=\alpha_{i}+d \log \left(g_{i j}\right) \\
\therefore \quad \beta_{j} & =\alpha_{j}^{\prime}-\alpha_{j} \\
& =\alpha_{i}^{\prime}-\alpha_{i} \\
& =\beta_{i}
\end{aligned}
$$

So the β_{i} glue together to give a globally vell-defined $1-$ form. In otter wards,

$$
\nabla_{x}^{\prime}(\cdot)=\nabla_{x}(\cdot)+\beta(x) .(\cdot)
$$

ie. $\quad \beta \cdot \nabla=\nabla^{\prime}$.

Definition The curvature of a connection ∇ on a line buddle is

$$
\operatorname{curv}(\nabla):=d \alpha \quad \in J^{2}(M)
$$

where $\left(\alpha_{i}\right)$ ar the local 1 -forms for ∇ relative to a local trivialization $\left(S_{i}\right)$.

What does this mean? Well, athnogh $\alpha_{i} \neq \alpha_{j}$, since

$$
\alpha_{j}=\alpha_{i}+\frac{d g_{i j}}{g_{i}} \text { on } U_{i} U_{j}
$$

we notice that

$$
\begin{aligned}
d \alpha_{j} & =d \alpha_{i}+\underbrace{\frac{d\left(\frac{d g_{i j}}{g_{i j}}\right)}{}} \begin{aligned}
& =\frac{g_{i j} d^{2} g_{i j}-d g_{i j} \wedge d g_{i_{j}}}{g_{i j}^{2}}
\end{aligned}=0 . \\
& =d \alpha_{i}
\end{aligned}
$$

So we get a gldoally well-detined 2 -fam curv (∇) !
Lemma curve (∇) is a closed 2 -form on M.
Proof Clear - because locally, curve $(\nabla)=d \alpha_{i}$, so

$$
d \operatorname{curv}(\nabla)=d^{2} \alpha_{i}=0 \text { on } U_{i}
$$

Lemma The cohomology class

$$
[\operatorname{curv}(\nabla)] \in H^{2}(M, \mathbb{C})
$$

is independent of the choice of connection ∇ on L. It is called the last Chen n class of L in de Rham conomonogy. Proof If ∇^{\prime} is another comection, then we know that

$$
\nabla^{\prime}=\nabla+\beta
$$

for some 1 -form β. That means, locally, in terms of the local 1-forms,

$$
\begin{aligned}
& \nabla_{x} s_{i}=\alpha_{i}(x) s_{i} \\
& \nabla_{x}^{\prime} s_{i}=\left(\alpha_{i}+\beta\right)(x) s_{i}
\end{aligned}
$$

ie.

$$
\begin{aligned}
\operatorname{curv}\left(\nabla^{\prime}\right) & =d\left(\alpha_{i}+\beta\right) \\
& =d \alpha_{i}+d \beta \quad \text { on } U_{i}
\end{aligned}
$$

ie.

$$
\begin{aligned}
& \operatorname{curv}\left(\nabla^{\prime}\right)=\operatorname{curv}(\nabla)+d \beta \text { on } M \\
& {\left[\operatorname{curv}\left(\nabla^{\prime}\right)\right]=[\operatorname{cur}(\nabla)]}
\end{aligned}
$$

$$
\text { i.e. } \quad\left[\operatorname{curv}\left(\mathbb{V}^{\prime}\right)\right]=[\operatorname{cur}(\mathbb{V})]
$$

A connection ∇ on a complex line bundle L defines a parole tronspart linear map

$$
P(\gamma): L_{x} \longrightarrow L_{\gamma}
$$

associated to any smooth curve $\gamma:[0,1] \longrightarrow M, \gamma(0)=x, \gamma(1)=y$.

How do we do this? It is defined as the sourish to the DDE for a section $s(t)$ over $\gamma(t)$:

$$
\nabla_{\gamma^{\prime}(t)} s(t)=0
$$

In ot les wards,

$$
\begin{aligned}
& P(x \xrightarrow{\gamma} y): L_{x} \longrightarrow L_{y} \\
& V \longmapsto \text { Unique san } s(1) \text { to } \\
& \text { ODE: } \\
& \nabla_{\gamma^{\prime}(t)}(t)=0 . \\
& s(0)=v .
\end{aligned}
$$

What happens when we parallet-ransport around closed loops? We get a linear map

$$
P(\gamma): L_{x} \longrightarrow L_{x}
$$

which is just multiplication by a complex number, called the holonomy of the connection around γ :

$$
P(\gamma)=\left.H_{0}\right|_{\nabla}(\gamma) i d_{L_{x}} .
$$

Note that $\mathrm{Hol}(\mathrm{Y})$ is independent of te basepoint x. (Why?)

Lena $H_{0} \|_{\nabla}(\gamma)=e^{-\int \cos (\nabla)}$ whee Σ is any surface in M
 bounded by γ.

Proof Locally, $\nabla_{x} s_{i}=\alpha_{i}(x) s_{i}$, so that parallel transport in U_{i} is just the integral of α_{i} :

$$
P(\gamma)=e^{i \int_{\gamma} \alpha_{i}}
$$

Why? Well, in U_{i}, the OOE we must solve is

$$
\nabla_{\gamma^{\prime}(t)} s(t) \quad=0 \quad, \begin{aligned}
& s(0)=V \\
& s(1)=?
\end{aligned}
$$

We can write

$$
s(t)=e^{i f(t)} s_{i}(t)
$$

where S_{i} is our local section on U_{i}, ie. $\nabla_{x} s_{i}=\alpha_{i}(x) s_{i}$
So our DE in terms of $f(t)$ is:

$$
\begin{aligned}
\nabla_{\gamma^{\prime}(t)} s(t)=0 & \Leftrightarrow \nabla_{\gamma^{\prime}(t)}\left(e^{i f} s_{i}\right)=0 \\
& \Leftrightarrow i e^{i f} \frac{d f(\gamma(t))}{d t} s_{i}+e^{i f} \alpha_{i}\left(\gamma^{\prime}(t)\right) s_{i}=0 \\
& \Leftrightarrow \frac{d f(\gamma(t))}{d t}=i \alpha_{i}\left(\gamma^{\prime}(t)\right) \\
& \Leftrightarrow f(\gamma(t))=i \int_{0}^{t} \alpha_{i}\left(\gamma^{\prime}(s)\right) d s \\
& \Leftrightarrow f(y)=f(x)+i \int_{\gamma^{\prime}} \alpha_{i}
\end{aligned}
$$

In otter words, in V_{i}, parallel transport is given by integrating α_{i} :

$$
\begin{aligned}
P(\gamma): L_{x} & \longrightarrow L_{y} \\
S_{i}(x) & \longmapsto e^{-\int \alpha_{i}} \delta_{i}(y)
\end{aligned}
$$

In general, we would break up γ into paths γ_{i} in each U_{i}. And then, in each U_{i}, we cold inplemat Stoles lemmal

$$
\int_{\partial \Sigma_{1}} \alpha=\int_{\Sigma} d \alpha
$$

which leads to the formula. (Details needed!)

Corollary $\frac{1}{2 \pi i}$ curv $(\nabla) \in J^{2}(M, \mathbb{R})$ is an integral 2 -form.
Proof We need to prase that integrating the 2 -form

$$
2 \pi i \operatorname{curv}(\nabla)
$$

over dosed surfaces Σ in M gives on integer. Well, by the previous formula for holonomy, we know:

$$
\begin{aligned}
& e^{-\int_{\varepsilon} \cos \nabla}=\underbrace{\operatorname{Hol}_{\nabla} \underbrace{(\partial \mathcal{E}}_{=\phi})}_{=1} \\
& \therefore \quad \int_{\sum} \operatorname{curv} \nabla=n \cdot 2 \pi i \quad, n \in \mathbb{Z} \text {. }
\end{aligned}
$$

We have shown (most of) the following

Theorem Giver a smooth manifold M, the map

$$
\left\{\begin{array}{c}
\substack{i s o m o r p h i s m ~ c l a s s e s ~ o f ~ \\
\text { convex line bundles owe } M}
\end{array} H_{d R}^{2}(M ; \mathbb{Z})\right.
$$

is given by

$$
[L] \longmapsto \frac{1}{2 \pi i}[\text { cur } \nabla]
$$

where ∇ is any comection on $L . \quad \pi$ the list Chem
Moreover, this mop is surjective.

Final remarks

We start with smooth manifolds.
Almost complex manifolds are nice examples of smooth manifolds.

Complex manifolds are nice examples of almost complex manifolds.

Kähler manifolds are nice examples of complex manifolds.
Integral Kähler manifolds (where the symplectic form ω has integral periods) are nice examples of Kähler manifolds!
Indeed, if our Kähler manifold (M, J, w, g) has integral ω, len we know fran the above that there exist a line bundle L with connection ∇ such that cur $\nabla=-i \omega$!
So: our Kähler data (the symplectic form ω) arises from a more primitive geometric object : the line bundle L with connection!

Moreover, we have the following:

Kodaira embedding theorem A compact complex manifold M admits an embedding into projective space $\mathbb{C} \mathbb{P}^{n}$ if and only if the exists a line bundle L on M with correction D such that ω : $=i \operatorname{couv}(\nabla)$ is a Kähler form on M.
i.e.: a compact complex manifold admits an embedding into projection space

$$
\Leftrightarrow
$$

it admits an integral Kähler metric!

Even more is true!

Chow's theorem Every complex submanifold of projective space admits the structure of an algebraic variety.

So we have a remarkable correspondence between complex differential geometry and algebraic geometry!

$$
\begin{aligned}
& \text { Compact integral Käther }=\begin{array}{l}
\text { smooth projective } \\
\text { manifolds }
\end{array} \quad \text { algebraic varieties. }
\end{aligned}
$$

